Zowe Version 2.4 Documentation

Table of contents:

e Zowe overview

e Zowe overview

¢ Zowe demo video

¢ Component overview

e Zowe Application Framework

e API| Mediation Layer

e Zowe CLI

e Zowe Explorer

e Zowe Client Software Development Kits (SDKs)

e Zowe Launcher

e Zowe Chat (Technical Preview)

e ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator
e Zowe Workflow wiZard - Incubator

e Zowe IntelliJ Plug-in - Incubator

Zowe Third-Party Software Requirements and Bill of Materials

e Zowe architecture

e Zowe architecture

Zowe architecture with high availability enablement on Sysplex
Zowe architecture when running in Kubernetes cluster

App Server

ZSS

API| Gateway

API Catalog

API Discovery

Caching service

Desktop Apps

e File APl and JES API

Cross Memory server

e FAQ: Zowe and components

e FAQ: Zowe and components

Zowe FAQ

e What is Zowe?

e Who is the target audience for using Zowe?
e What language is Zowe written in?

e What is the licensing for Zowe?

e Why is Zowe licensed using EPL2.0?

e What are some examples of how Zowe technology might be used by z/OS products and
applications?

e What is the best way to get started with Zowe?

e What are the prerequisites for Zowe?

e What's the difference between using Zowe with or without Docker?

* |s the Zowe CLI packaged within the Zowe Docker download?

e Does ZOWE support z/OS ZIIP processors?

e How is access security managed on z/OS?

e How is access to the Zowe open source managed?

e How do | get involved in the open source development?

e When will Zowe be completed?

e Can | try Zowe without a z/OS instance?

Zowe CLIFAQ

e Why might | use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?

e With what tools is Zowe CLI compatible?

e Where can | use the CLI?

e Which method should | use to install Zowe CLI?

e How can | get Zowe CLI to run faster?

e How can | manage profiles for my projects and teams?

e How can | get help with using Zowe CLI?

e How can | use Zowe CLI to automate mainframe actions?

e How can | contribute to Zowe CLI?

Zowe Explorer FAQ

* Why might | use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?

e How can | get started with Zowe Explorer?

e Where can | use Zowe Explorer?

e How do | get help with using Zowe Explorer?

e How can | use Secure Credential Storage for Zowe Explorer?

e What types of profiles can | create for Zowe Explorer?

e How can |l use FTP as my back-end service for Zowe Explorer?

e How can | contribute to Zowe Explorer?

Zowe IntelliJ plug-in (incubator) FAQ

e Why might | use Zowe IntelliJ plug-in versus a traditional ISPF interface to perform mainframe
tasks?

e How can | get started with Zowe IntelliJ plug-in?

e Where can | use Zowe IntelliJ plug-in?

e How do | get help with using Zowe IntelliJ plug-in?

e How can | create, edit and delete z/OSMF connection?
e How can | contribute to Zowe IntelliJ plug-in?

FAQ: Zowe V2
FAQ: Zowe V2

Where can | find the V1 and V2 LTS conformance criteria?

Whats the difference between "server.json" and "example-zowe.yaml|"?
What are the new default ports?

How do | access Zowe through the API Mediation Layer in V2?

What new frameworks are supported in V2?

Why aren't the explorers appearing on my desktop anymore?

Version 2.4.0 (October 2022)
Version 2.4.0 (October 2022)

New features and enhancements

e Zowe installation and packaging

Zowe Application Framework

Zowe API| Mediation Layer
Zowe CLI
Zowe Explorer

e Zowe Explorer FTP Extension
Bug fixes

e Zowe Application Framework
e Zowe API Mediation Layer

e Zowe CLI

e Zowe Explorer

* Vulnerabilities fixed

Version 2.3.1 (September 2022)
Version 2.3.1 (September 2022)
Version 2.3.0 (September 2022)
Version 2.3.0 (September 2022)

New features and enhancements

e Zowe installation and packaging
e Zowe Application Framework

e Zowe API Mediation Layer

e Zowe CLI

e Zowe Explorer

e Bug fixes

e Zowe installation and packaging
e Zowe Application Framework

Zowe API Mediation Layer
Zowe CLI
Zowe Explorer

Vulnerabilities fixed
e \ersion 2.2.0 (July 2022)
e Version 2.2.0 (July 2022)
* New features and enhancements
e Zowe installation and packaging
e Zowe Application Framework
e Zowe API Mediation Layer
e Zowe CLI
e Zowe Explorer
* Bug fixes
e Zowe APl Mediation Layer
e Zowe CLI
e Zowe Explorer
e Version 2.1.0 (June 2022)
e Version 2.1.0 (June 2022)
* New features and enhancements
e Zowe APl Mediation Layer
e Zowe Application Framework
e Zowe CLI
e Bug fixes
e Zowe APl Mediation Layer
e Zowe CLI
e Zowe Application Framework
e Zowe Explorer
e Version 2.0.0 (April 2022)
e Version 2.0.0 (April 2022)
e Breaking changes
e Zowe installation
e API Mediation Layer
e Zowe Application Framework
e Zowe CLI
* New features and enhancements
e Zowe installation
e Zowe APl Mediation Layer
e Zowe Application Framework

e Zowe CLI
e Zowe Explorer

e Bug fixes

e Zowe APl Mediation Layer
e Zowe Application Framework

e Conformance and release compatibility

e Backward compatibility
e Forward compatibility
e Conformance compatibility

Zowe V2 office hours videos

Zowe V2 office hours videos

¢ (Office hours for Zowe extenders

e General information

e Zowe component updates

e [nstallation and V2 conformance
Office hours for Zowe consumers

e Zowe component updates

Zowe CLI quick start

Zowe CLI quick start

Installing

e Software Requirements

e |Installing Zowe CLI core from public npm
 |Installing CLI plug-ins

Issuing your first commands

e Listing all data sets under a high-level qualifier (HLQ)
e Downloading a partitioned data-set (PDS) member to local file
Team profiles

Using profiles

e Profile types

e Creating zosmf profiles

e Using zosmf profiles

Writing scripts

e Example:

Next steps

Migrating Zowe server component from V1 to V2

Migrating Zowe server component from V1to V2

Component manifest
Lifecycle scripts

e Environment variables

¢ Packaging one component deliverable for both Zowe v1 and v2
Zowe learning resources

Zowe learning resources

e Blogs

e Videos

Webinars
e Community
e Training
Overview
Overview
Installation roadmap
Installation roadmap
e Stage 1: Plan and prepare
» Stage 2: Install the Zowe z/OS runtime
e Stage 3: Initialize a configuration of the Zowe z/OS runtime
e Stage 4: (Optional) Customize the configuration
e Stage 5: (Optional) Installing extensions
¢ Looking for troubleshooting help?
Planning the installation
Planning the installation
e Topology of the Zowe z/OS launch process
e Runtime directory
e 7/OS Data sets used by Zowe
e Zowe configuration file
e Workspace directory
e Logdirectory
e Keystore directory
e Extension directory
UNIX System Services considerations for Zowe
UNIX System Services considerations for Zowe
e What is USS?
Setting up USS for the first time
Language environment
OMVS segment
Address space region size

System requirements
System requirements

e 7/OS system requirements
e 7/OS
e Node.js
e Java
e 7/OSMF (Optional)
e User ID requirements
e ZWESVUSR
e ZWESIUSR
e ZWEADMIN
e zowe_user
e Network requirements
e Zowe Containers requirements
e Zowe Desktop requirements (client PC)
e Feature requirements
e Multi-Factor Authentication (MFA)
¢ Single Sign-On (SSO)
* Memory requirements
Installing Node.js on z/OS
Installing Node.js on z/OS
e Supported Node.js versions
How to obtain IBM SDK for Node.js - z/OS
Hardware and software prerequisites
Installing the PAX edition of Node.js - z/OS
Installing the SMPJE edition of Node.js - z/OS
Configuring z/OSMF
Configuring z/OSMF
* 7/OS requirements for z/OSMF configuration
¢ Configuring z/OSMF
e 7/OSMF REST services for the Zowe CLI
e Configuration of z/OSMF to properly work with API ML

Configuring z/OSMF Lite (for non-production use)
Configuring z/OSMF Lite (for non-production use)
* Introduction
e Assumptions
* Software Requirements
e Minimum Java level
e WebSphere® Liberty profile (z/OSMF V2R3 and later)
e System settings

e Web browser

Creating a z/OSMF nucleus on your system

e Running job IZUNUSEC to create security

e Running job IZUMKEFS to create the z/OSMF user file system
e Copying the IBM procedures into JES PROCLIB

e Starting the z/OSMF server

e Accessing the zZOSMF Welcome page

e Mounting the z/OSMF user file system at IPL time
Adding the required REST services

e Enabling the z/OSMF JOB REST services

e Enabling the TSO REST services

e Enabling the z/OSMF data set and file REST services
e Enabling the z/OSMF Workflow REST services and Workflows task Ul
Troubleshooting problems

e Common problems and scenarios

* Tools and techniques for troubleshooting

Appendix A. Creating an IZUPRMxx parmlib member
Appendix B. Modifying IZUSVR1 settings

Appendix C. Adding more users to z/JOSMF

e Before you Begin

e Procedure

e Results

e |nstalling Zowe runtime from a convenience build

* Installing Zowe runtime from a convenience build

Introduction

Step 1: Obtain the convenience build

Step 2: Transfer the convenience build to USS and expand it

Step 3: (Optional) Add the zwe command to your PATH

Step 4: Copy the zowe.yaml configuration file to preferred location
Step 5: Install the MVS data sets

e About the MVS data sets

e Procedure

Next steps

¢ |nstalling Zowe SMPJE
* Installing Zowe SMPJE

Introduction
e Zowe description
e Zowe FMIDs

e Program materials
e Basic machine-readable material
e Program source materials
e Publications useful during installation
e Program support
e Statement of support procedures
e Program and service level information
e Program level information
e Service level information
¢ |nstallation requirements and considerations
e Driving system requirements
e Target system requirements
e FMIDs deleted
e [nstallation instructions
e SMPJE considerations for installing Zowe
e SMPJE options subentry values
e Qverview of the installation steps
e Download the Zowe SMPJE package>P>
e Allocate file system to hold the download package
e Upload the download package to the host
e Extract and expand the compressed SMPMCS and RELFILEs
e Sample installation jobs
e Create SMPJE environment (Optional)
e Perform SMP/E RECEIVE
e Allocate SMPJE target and distributions libraries
e Allocate, create and mount ZSF files (Optional)
* Allocate z/OS UNIX paths
e Create DDDEF entries
e Perform SMPJE APPLY
e Perform SMP/E ACCEPT
e Run REPORT CROSSZONE
* (Cleaning up obsolete data sets, paths, and DDDEFs
e Activating Zowe
e File system execution
e Zowe customization
e Installing Zowe SMPJE build with z/OSMF workflow
e Installing Zowe SMPJE build with zJOSMF workflow
e Activating Zowe

* File system execution
e Zowe customization
Installing Zowe from a Portable Software Instance
Installing Zowe from a Portable Software Instance
¢ Prerequisites
e Procedure
Address z/OSMF Requirements
Address z/OSMF Requirements
Acquire a z/OSMF Portable Software Instance
Acquire a z/OSMF Portable Software Instance
* Download the Portable Software Instance from Zowe Downloads
e Register Portable Software Instance in z/OSMF
Install Product Software Using z/OSMF Deployments
Install Product Software Using z/OSMF Deployments
Initializing the z/OS system
Initializing the z/OS system
* About the zwe init command
e Procedure
e Next steps
Initializing Zowe custom data sets
Initializing Zowe custom data sets
e Introduction
e Procedure
e Results
Initialize Zowe security configurations
Initialize Zowe security configurations
e Configuring with zwe init security command
e Configuring with ZWESECUR JCL

e Undo security configurations
¢ Next steps
Configuring the z/OS system for Zowe
Configuring the z/OS system for Zowe
e Configure an ICSF cryptographic services environment
¢ Configure security environment switching
* Configure address space job haming
¢ Configure multi-user address space (for TSS only)
e Configure user IDs and groups for the Zowe started tasks
e Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ID

e Configure the cross memory server for SAF
¢ Configure main Zowe server to use identity mapping
e Using RACF
e Using ACF2
e Using TSS
e Configure signed SAF Identity tokens (IDT)
Granting users permission to access z/OSMF
Granting users permission to access z/OSMF
APF authorize load libraries
APF authorize load libraries
Configuring PKCS12 certificates
Configuring PKCS12 certificates
* Use a PKCS12 certificate
e Create a self signed PKCS12 certificate
e Manually import a certificate authority into a web browser
Configuring JCERACFKS certificates in a key ring
Configuring JCERACFKS certificates in a key ring
e Create a certificate authority and use it to self sign a certificate
* Create a self signed JCERACFKS certificate
Set up Zowe certificates using workflows
Set up Zowe certificates using workflows
Creating VSAM caching service datasets
Creating VSAM caching service datasets
¢ Using zwe init vsam command
Installing Zowe main started tasks
Installing Zowe main started tasks
Installing and configuring the Zowe cross memory server (ZWESISTC)
Installing and configuring the Zowe cross memory server (ZWESISTC)
e PDS sample library and PDSE load library
e Load module
e APF authorize
e Key 4 non-swappable
e PARMLIB
e PROCLIB
* SAF configuration
e Summary of cross memory server installation
e Starting and stopping the cross memory server on z/OS
e Zowe auxiliary service

* When to configure the auxiliary service
e |Installing the auxiliary service
Zowe Auxiliary Address space
Zowe Auxiliary Address space
Configure Zowe with z/OSMF Workflows
Configure Zowe with z/OSMF Workflows
* Configure the Zowe instance directory
» Execute the configuration workflow
» Execute workflow from PSWI
e Execute workflow from software instance
* Register and execute workflow in the zZJOSMF web interface
Using the Configuration Manager
Using the Configuration Manager
¢ Using zwe with Configuration Manager
e Validation error reporting
e Example
e JSON-Schema validation
e Splitting configuration into multiple files
* Configuration templates
e Configuration Manager unix executable
Overview
Overview
* Enable high availability when Zowe runs in Sysplex
e Known limitations
» Enable high availability when Zowe runs in Kubernetes
Configuring Sysplex for high availability
Configuring Sysplex for high availability
e Sysplex environment requirements
¢ Configuring Sysplex Distributor
Configuring z/OSMF for high availability in Sysplex
Configuring z/OSMF for high availability in Sysplex
e Sysplex environment requirements
e Setting up z/OSMF nucleus
e Requirements of zJOSMF HA parmlib member in Sysplex
* Configuring z/OSMF for high availability
Configuring the Caching Service for HA
Configuring the Caching Service for HA
Starting and stopping Zowe

Starting and stopping Zowe

Starting and stopping the cross memory server ZWESISTC on z/OS

Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS

Starting and stopping Zowe main server ZWESLSTC on z/OS with zwe server command
Starting and stopping Zowe main server ZWESLSTC on z/OS manually

Stopping and starting a Zowe component without restarting Zowe main server

Verifying Zowe installation on z/OS

Verifying Zowe installation on z/OS

Verifying Zowe Application Framework installation
Verifying APl Mediation installation
Verifying z/OS Services installation

Introduction

Introduction

Known limitations

Prerequisites

Prerequisites

Kubernetes cluster
kubectl tool

Downloading and installing

Downloading and installing

Downloading

e Downloading configuration samples
e Downloading container images
Installing

Upgrading

Configuring

Configuring

1. Create namespace and service account

2. Create Persistent Volume Claim (PVC)

3. Create and modify ConfigMaps and Secrets
4. Expose API Mediation Layer components

e 4a. Create service

e 4b. Create Ingress (Bare-metal)

e 4c. Create Route (OpenShift)

Customizing or manually creating ConfigMaps and Secrets
PodDisruptionBudget
HorizontalPodAutoscaler

Kubernetes v1.21+

Starting, stopping, and monitoring
Starting, stopping, and monitoring
e Starting Zowe containers
e Port forwarding (for minikube only)
» Verifying Zowe containers
e Monitoring Zowe containers
e Monitoring Zowe containers via Ul
e Monitoring Zowe containers via CLI
e Stopping, pausing or removing Zowe containers
Installation checklist
Installation checklist
e Addressing the prerequisites
* Installing Zowe CLI
e Configuring Zowe CLI
Information roadmap for Zowe CLI
Information roadmap for Zowe CLI
e Fundamentals
e Quick start
¢ |nstalling
e Configuring and updating
» Using Zowe CLI and plug-ins
¢ Developing a Zowe CLI plug-in
e Contributing to Zowe CLI
¢ Troubleshooting and support
e Community resources
System requirements
System requirements
¢ Client-side requirements
¢ Host-side requirements
¢ Free disk space
Installing Zowe CLI
Installing Zowe CLI
¢ |Installation guidelines
e |nstallation notes
e Prerequisites
e Prerequisite notes
e Install Zowe CLI from npm
¢ |nstall Zowe CLI from a local package

Configuring Secure Credential Store on headless Linux operating systems
Configuring Secure Credential Store on headless Linux operating systems
¢ Headless Linux requirements
* Unlocking the keyring manually
» Unlocking the keyring automatically
e Configuring z/Linux
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
e V1 profiles
e Team configuration
Installing Zowe CLI with Node.js 16 on Windows
Installing Zowe CLI with Node.js 16 on Windows
» Additional Considerations
Install CLI from Online Registry Via Proxy
Install CLI from Online Registry Via Proxy
Updating Zowe CLI
Updating Zowe CLI
e Updating to the Zowe CLI V2 Long-term Support (v2-Its) version
 |dentify the currently installed version of Zowe CLI
¢ |dentify the currently installed versions of Zowe CLI plug-ins
¢ Update Zowe CLI from the online registry
e Update or revert Zowe CLI to a specific version
e Update Zowe CLI from a local package
Uninstalling Zowe CLI
Uninstalling Zowe CLI
Information Roadmap for Zowe Explorer
Information Roadmap for Zowe Explorer
e Fundamentals
* Installing and configuring
e Using Zowe Explorer
e Extending Zowe Explorer
e Contributing to Zowe Explorer
¢ Troubleshooting and support
e Community resources
Visual Studio Code (VS Code) Extension for Zowe
Visual Studio Code (VS Code) Extension for Zowe
e Software Requirements
e Profile notes:

* Installing
¢ Configuration
* Relevant Information
Zowe Explorer profiles
Zowe Explorer profiles
e Configuring team profiles
e Creating team configuration files
e Managing profiles
e Sample profile configuration
e Working with Zowe Explorer profiles
e Validating profiles
* Using base profiles and tokens with existing profiles
e Accessing services through API ML using SSO
e Logging in to the Authentication Service
Introduction
Introduction
¢ Deployment diagram
System requirements
System requirements
¢ Linux system requirements
e Node.js
e Zowe CLI (Optional)
e 7/OS system requirements
e 7/OSMF
e Network requirements
* Ports
e Connectivity Requirements
¢ Chat Tool Requirements
Configuring Mattermost chat platform
Configuring Mattermost chat platform
Installing Mattermost chat platform server
Installing Mattermost chat platform server
* Installing
¢ Next steps
Creating administrator account and Mattermost team
Creating administrator account and Mattermost team
Creating the bot account
Creating the bot account

¢ Next steps

Inviting the created bot to your Mattermost team

Inviting the created bot to your Mattermost team

* Next steps

Inviting the created bot to your Mattermost channel

Inviting the created bot to your Mattermost channel

Enabling insecure outgoing connections for mouse navigation
Enabling insecure outgoing connections for mouse navigation
Configuring Microsoft Teams chat platform

Configuring Microsoft Teams chat platform

Creating Microsoft Teams bot app with Developer Portal
Creating Microsoft Teams bot app with Developer Portal
Creating a bot for Microsoft Teams bot app

Creating a bot for Microsoft Teams bot app

Creating a bot with Microsoft Bot Framework

Creating a bot with Microsoft Bot Framework

Creating a bot with Microsoft Azure

Creating a bot with Microsoft Azure

Configuring messaging endpoint for Microsoft Teams
Configuring messaging endpoint for Microsoft Teams
Configuring messaging endpoint for the Microsoft Bot Framework bot
Configuring messaging endpoint for the Microsoft Bot Framework bot
Configuring messaging endpoint for the Microsoft Azure bot
Configuring messaging endpoint for the Microsoft Azure bot
Configuring Slack chat platform

Configuring Slack chat platform

Creating a new Slack App

Creating a new Slack App

Configuring the Slack App

Configuring the Slack App

Connecting to Slack using Socket mode

Connecting to Slack using Socket mode

Connecting to Slack using public HTTP endpoint

Connecting to Slack using public HTTP endpoint

Installing the Slack App

Installing the Slack App

Adding your bot user to your Slack channel

Adding your bot user to your Slack channel

e Mention your bot user directly

e Use the channel link

Installing Zowe Chat

Installing Zowe Chat

¢ Prerequisites

¢ |Installing

Configuring Zowe Chat

Configuring Zowe Chat

e Zowe Chat server configuration

e Zowe Chat z/OSMF endpoint configuration
* Chat tool configuration

Configuring Zowe Chat with Mattermost
Configuring Zowe Chat with Mattermost
¢ Prerequisite

¢ Configuring Mattermost

Configuring Zowe Chat with Microsoft Teams
Configuring Zowe Chat with Microsoft Teams
¢ Prerequisite

» Configuring Microsoft Teams
Configuring Zowe Chat with Slack
Configuring Zowe Chat with Slack

¢ Prerequisite

* Configuring Slack

Starting and stopping Zowe Chat
Starting and stopping Zowe Chat

e Starting Zowe Chat

* Stopping Zowe Chat

Uninstalling Zowe Chat

Uninstalling Zowe Chat

Installing Zowe IntelliJ plug-in

Installing Zowe IntelliJ plug-in
Configuring Zowe IntelliJ plug-in
Configuring Zowe IntelliJ plug-in

e Creating z/OSMF connection

¢ (Creating a files working set

¢ Creating a JES working set
Configuring Zowe Application Framework
Configuring Zowe Application Framework

Accessing the App Server

e Accessing the Desktop

Accessing ZSS

Configuration file

e app-server configuration

e 7ss configuration

Environment variables

Configuring the framework as a Mediation Layer client
Setting up terminal app plugins

e Setting up the TN3270 mainframe terminal app plugin
e Setting up the VT Terminal app plugin
Network configuration

e HTTPS

e HTTP

Configuration Directories

e Old defaults

App plugin configuration

Logging configuration

e Enabling tracing

e Logfiles

ZSS configuration

e ZSS 64 or 31 bit modes

Using AT-TLS in the App Framework

e Creating AT-TLS certificates and keyring using RACF
e Defining the AT-TLS rule

Using multiple ZIS instances

Controlling access to apps

e Enabling RBAC

e Controlling app access for all users

e Controlling app access for individual users
Controlling access to dataservices

e Defining the RACF ZOWE class

Creating authorization profiles

Creating generic authorization profiles

Configuring basic authorization

Endpoint URL length limitations
Multi-factor authentication configuration
e Session duration and expiration

e Configuration
Administering the servers and plugins using an API

Configuring Zowe CLI environment variables

Configuring Zowe CLI environment variables

Setting the CLI home directory
Setting a shared plug-in directory
Setting CLI log levels

Setting CLI daemon mode properties

Configuring the Zowe APlIs

Configuring the Zowe APIs

Advanced Gateway features configuration

Advanced Gateway features configuration

SAF as an Authentication provider

Enable JWT token refresh endpoint

Change password with SAF provider

Change password with z/JOSMF provider
Gateway retry policy

Gateway client certificate authentication
Gateway timeouts

CORS handling

Encoded slashes

Add a custom HTTP Auth header

Connection limits

Routed instance header

Distributed load balancer cache

Replace or remove the Catalog with another service
API Mediation Layer as a standalone component
SAF Resource Checking

e Checking providers

Discovery Service configuration parameters

Discovery Service configuration parameters

Zowe runtime configuration parameters
API ML configuration
Eureka configuration

API Gateway configuration parameters

API| Gateway configuration parameters

Runtime configuration

¢ Environment variables

» Service configuration

Zuul configuration

Hystrix configuration
AT-TLS
Enabling PassTicket creation for API Services that Accept PassTickets

Enabling PassTicket creation for API Services that Accept PassTickets
e QOverview

Outline for enabling PassTicket support

Security configuration that allows the Zowe API Gateway to generate PassTickets for an API service
e ACF2

* Top Secret

e RACF

API services that support PassTickets

» API Services that register dynamically with API ML that provide authentication information
* API Services that register dynamically with API ML but do not provide metadata
* API services that are defined using a static YAML definition

Adding YAML configuration to API services that register dynamically with APl ML
Personal Access Token
Personal Access Token
e User APIs
* Generate a token
e Validate a token
e |nvalidate a specific token
e Invalidate all tokens
e Security Administrator APIs
e Invalidate all tokens for a user
* Invalidate all tokens for a service
e Evict non-relevant tokens and rules
e Use the Personal Access Token to authenticate
Getting started
Getting started
Using the Zowe Desktop
Using the Zowe Desktop
¢ Navigating the Zowe Desktop
e Accessing the Zowe Desktop
e Logging in and out of the Zowe Desktop
e Changing user password
e Updating an expired password

e Pinning applications to the task bar

Open application in new tab

Personalizing the Desktop

Changing the desktop language
e Zowe Desktop application plugins
e Hello World Sample
e |Frame Sample
e Sample Angular App
e Sample React App
e 3270 Terminal
e VT Terminal
e API Catalog
e Editor
e JES Explorer
e |P Explorer
e MVS Explorer
e USS Explorer
Using the Editor
Using the Editor
* Specifying a highlighting language
¢ Open a dataset
e Deleting a file or folder
* Opening a directory
¢ Creating a new directory
¢ Creating a new file
e Hotkeys
Using API Mediation Layer
Using API Mediation Layer
¢ API Mediation Layer Use Cases
View Service Information and APl Documentation in the API Catalog
View Service Information and API Documentation in the API Catalog
Swagger "Try it out" functionality in the API Catalog
Swagger "Try it out" functionality in the API Catalog
e Make a request
Swagger Code Snippets functionality in the API Catalog
Swagger Code Snippets functionality in the API Catalog
¢ Generate the code snippets
Static APIs refresh functionality in the API Catalog

Static APIs refresh functionality in the API Catalog
Change expired password via API Catalog
Change expired password via API Catalog
Onboarding a REST API service with the YAML Wizard
Onboarding a REST API service with the YAML Wizard
¢ Onboarding your REST service with the Wizard
Using Metrics Service (Technical Preview)
Using Metrics Service (Technical Preview)
* API Mediation Layer Metrics Service Demo Video
e View HTTP Metrics in the Metrics Service Dashboard
API Mediation Layer routing
API Mediation Layer routing
e Terminology
¢ APIML Basic Routing (using Service ID and version)
e |mplementation Details
e Basic Routing (using only the service ID)
Obtaining Information about API Services
Obtaining Information about API Services
e APIID in the APl Mediation Layer
» Protection of Service Information
e API Endpoints
e Obtain Information about a Specific Service
e Obtain Information about All Services
e (Obtain Information about All Services with a Specific API ID
e Response Format
WebSocket support in APl Gateway
WebSocket support in APl Gateway
e Security and Authentication
e Subprotocols
¢ High availability
¢ Diagnostics
e Limitations
Using Zowe CLI
Using Zowe CLI
Displaying help
Displaying help
e Top-level help
e Group, action, and object help

e Launch local web help

¢ Viewing web help
e Understanding core command groups
e Understanding core command groups

e auth

e config

e daemon

¢ plugins

e profiles

e provisioning

e Zz0s-console

e zos-files

e z0s-jobs

e 70s-ssh

e zos-workflows

e 70s-tso

e zosmf
e |ssuing your first command
e |ssuing your first command
e Using daemon mode
e Using daemon mode

e Preparing for installation

Enable daemon mode

Restart daemon mode

Disable daemon mode
e Configure daemon mode on z/Linux operating systems
e Configure daemon mode on z/Linux operating systems
e Using profiles
e Using profiles
e Zowe CLI profile types
e Tips for using Zowe CLI profiles
e Important information about team profiles
¢ Displaying profile help
¢ Service profiles
e Base profiles
e Tips for using base profiles
¢ Profile best practices
¢ Testing connections to z/OSMF

e Without a profile
e Default profile
* Specific profile

Using team profiles

Using team profiles

Initializing team configuration

Initializing team configuration

¢ Create team profile configuration files

¢ Connecting profiles to APl Mediation Layer

Team configuration for application developers

Team configuration for application developers

e Initializing user-specific configuration

* Editing team profiles

Team configuration for team leaders

Team configuration for team leaders

¢ Sharing team configuration files

* Profile scenarios
e Access to one or more LPARs that contain services that share the same credentials
e Access to one or more LPARs contain services that do not share the same credentials
e Access to LPARs that access services through one APl Mediation Layer
e Access to LPARs that access services through one APl Mediation Layer using certificate

authentication

Sharing team configuration files

Sharing team configuration files

* Network drive

e Project repository and web server

Managing credential security

Managing credential security

e Changes to secure credential storage

Storing properties automatically

Storing properties automatically

Integrating with APl Mediation Layer

Integrating with API Mediation Layer

e How token management works

e Loggingin

e Logging out

e Accessing a service through APl ML
» Specifying a base path

» Accessing multiple services with SSO
¢ Accessing services through SSO + one service not through APIML
* Accessing services through SSO + one service through API ML but not SSO
Working with certificates
Working with certificates
e Configure certificates signed by a Certificate Authority (CA)
e Extend trusted certificates on client
e Bypass certificate requirement
Using environment variables
Using environment variables
Formatting environment variables
Formatting environment variables
Setting environment variables in an automation server
Setting environment variables in an automation server
Using the prompt feature
Using the prompt feature
Writing scripts
Writing scripts
e Sample script library
e Example: Clean up Temporary Data Sets
e Example: Submit Jobs and Save Spool Output
Extending Zowe CLI
Extending Zowe CLI
Software requirements for Zowe CLI plug-ins
Software requirements for Zowe CLI plug-ins
Installing Zowe CLI plug-ins
Installing Zowe CLI plug-ins
¢ Installing plug-ins from an online registry
* Installing plug-ins from a local package
e Validating plug-ins
e Updating plug-ins
e Update plug-ins from an online registry
e Update plug-ins from a local package
¢ Uninstall Plug-ins
IBM® CICS® Plug-in for Zowe CLI
IBM® CICS® Plug-in for Zowe CLI
e Use cases
e Commands

Software requirements

Installing

Creating a user profile

e Creating plug-in profiles using a configuration file
e Creating plug-in profiles using a command

e |IBM® Db2® Database Plug-in for Zowe CLI
e IBM® Db2® Database Plug-in for Zowe CLI

Use cases

Commands

Software requirements

Installing

e Installing from an online registry

e Installing from a local package

Addressing the license requirement

e Server-side license

e Client-side license

Creating a user profile

e Creating plug-in profiles using a configuration file
e Creating plug-in profiles using a command

e M1 processor installation

e M1 processor installation
e IBM® z/OS FTP Plug-in for Zowe CLI
e IBM® z/OS FTP Plug-in for Zowe CLI

Use cases

Commands

Software requirements

Installing

Creating a user profile

» Creating plug-in profiles using a configuration file
e Creating plug-in profiles using a command

e |ssuing test commands

e |IBM® IMS™ Plug-in for Zowe CLI
e |IBM® IMS™ Plug-in for Zowe CLI

Use cases

Commands

Software requirements
Installing

Creating user profiles

» Creating plug-in profiles using a configuration file
e Creating plug-in profiles using a command
IBM® MQ Plug-in for Zowe CLI
IBM® MQ Plug-in for Zowe CLI
e Use cases
e Using IBM MQ plug-in commands
* Software requirements
* |Installing
¢ Creating a user profile
e Creating plug-in profiles using a configuration file
e Creating plug-in profiles using a command
Using Zowe Explorer
Using Zowe Explorer
e Supported operating systems, environments, and platforms
e QOperating systems
* Integrated development environments:
* Platform versions:
e Usage Tips
* Using a specific version of Zowe Explorer
e Zowe Explorer is installed
e Zowe Explorer is not installed
Sample Use Cases
Sample Use Cases
e Working with Data Sets
* Viewing data sets and using multiple filters
e Viewing data sets with member filters
e Refreshing the list of data sets
e Renaming data sets
e Copying data set members
e Editing and uploading a data set member
e Preventing merge conflicts
e Creating data sets and specifying parameters
e Creating data sets and data set members
e Deleting a data set member and a data set
e Viewing and accessing multiple profiles simultaneously
e Submiting a JCL
» Allocate like
e Working with USS files

* Viewing Unix System Services (USS) files
e Refreshing the list of files
e Renaming USS files
e Downloading, editing, and uploading existing USS files
e Creating and deleting USS files and directories
* Viewing and accessing multiple USS profiles simultaneously
e Working with jobs
e Viewing a job
e Downloading spool content
e |ssuing MVS commands
e Issuing TSO commands
Using Zowe Explorer CICS Extension
Using Zowe Explorer CICS Extension
e Features
e System requirements
Installing and uninstalling
Installing and uninstalling
e Installing from Visual Studio Code Extensions
* |Installing from a VSIX file
¢ Uninstalling
Creating Zowe Explorer CICS Extension profiles
Creating Zowe Explorer CICS Extension profiles
* Using Zowe team configuration
e Using Zowe V1 profiles
e Updating profiles
e Updating profiles using Zowe team profiles
e Updating Zowe V1 profiles
» Hiding profiles
» Deleting profiles
e Deleting Zowe team profiles
e Deleting Zowe V1 profiles
Using CICS resources
Using CICS resources
¢ Showing and filtering resources in a region
* Showing and filtering resources in a plex
¢ Showing and filtering resources in an 'All' resource tree
¢ Showing attributes
e Enabling and disabling

¢ New copy and phase in
¢ Opening and closing local files
Overriding untrusted TLS certificates
Overriding untrusted TLS certificates
Usage tips
Usage tips
Providing feedback and contributing
Providing feedback and contributing
* Filing anissue
e Chatting with the community
Installing Zowe Explorer FTP Extension
Installing Zowe Explorer FTP Extension
* Installing
e Uninstalling
Using the FTP Extension
Using the FTP Extension
¢ Prerequisites
e Using
* Creating an FTP profile with Zowe Explorer
Supported functionality
Supported functionality
e Supported data set functionalities
e Supported USS functionalities
e Supported jobs functionalities
Providing feedback and contributing
Providing feedback and contributing
e Chatting with the community
Interacting with Zowe Chat
Interacting with Zowe Chat
¢ Mouse navigation
¢ |nteracting through commands

e Zowe Chat commands

e Zowe CLI commands
Using Zowe SDKs
Using Zowe SDKs
e SDK documentation
e Software requirements

e Node.js

e Python
e Getting started
 Install SDK from online registry
e |nstall SDK from local package
e Using
e Using - Node.js
e Using - Python
e Contributing
Using Zowe IntelliJ plug-in (incubator)
Using Zowe IntelliJ plug-in (incubator)
e Working with datasets
e Working with USS files
* Working with jobs
Extending Zowe
Extending Zowe
e Extend Zowe CLI
Extend Zowe API Mediation Layer

e Dynamic API registration
e Static API registration

Add a plug-in to the Zowe Desktop

Extend Zowe Explorer

Sample extensions
e Sample Zowe API and API Catalog extension
e Sample Zowe Desktop extension
Packaging z/OS extensions
Packaging z/OS extensions
e Zowe server component package format
e Zowe component manifest
e Sample manifests
Server component schemas
Server component schemas
* Requirements
» Additional information
e Example
e Example manifest
e Example schema
» Validation
Install Zowe server component

Install Zowe server component
¢ [nstall component
¢ Enable and disable component
¢ Install and configure manually
e Zowe core components
e Zowe z/OS extensions
Zowe server component runtime lifecycle
Zowe server component runtime lifecycle
e Zowe runtime lifecycle
e Zowe component runtime lifecycle
e Validate
e Configure
e Start
Creating and adding Zowe extension containers
Creating and adding Zowe extension containers
¢ 1. Build and publish an extension image to a registry
e 2. Define Deployment or Job object
e 3. Start your component
Zowe Containerization Conformance Criteria
Zowe Containerization Conformance Criteria
¢ |Image
e Base Image
e Multi-CPU Architecture
e |mage Label
e Tag
e Files and Directories
¢ User zowe
e Multi-Stage Build
* Runtime
e General rules
e Persistent Volume(s)
 Files and Directories
e ConfigMap and Secrets
e ompzowe/zowe-launch-scripts Image and initContainers
e Command Override
e Environment Variables
e CI/CD
e Build, Test and Release

Developing for Zowe CLI

Developing for Zowe CLI

¢ How to contribute

e (Getting started

e Tutorials

e Plug-in development overview

e Imperative CLI Framework documentation
e Contribution guidelines

Setting up your development environment

Setting up your development environment

Prerequisites

Initial setup

Branches

¢ Clone zowe-cli-sample-plugin and build from source
e (Optional) Run the automated tests

Next steps

Installing the sample plug-in

Installing the sample plug-in

Overview

Installing the sample plug-in to Zowe CLI
Viewing the installed plug-in

Using the installed plug-in

Testing the installed plug-in

Next steps

Extending a plug-in

Extending a plug-in

Overview
e Creating a Typescript interface for the Typicode response data

Creating a programmatic API

Checkpoint one

Creating a command definition

Creating a command handler
e Checkpoint two

Using the installed plug-in
Summary

Next steps

Developing a new plug-in

Developing a new plug-in

e Overview
¢ Cloning the sample plug-in source
e Changing package.json
e Adjusting Imperative CLI Framework configuration
e Adding third-party packages
e Creating a Node.js programmatic API
e Exporting your API
e Checkpoint
e Defining commands
e Trying your command
¢ Bringing together new tools!
* Next steps
Implementing profiles in a plug-in
Implementing profiles in a plug-in
Onboarding Overview
Onboarding Overview
¢ Prerequisites
e Service Onboarding Guides
e Recommended guides for services using Java
e Recommended guides for services using Node.js
* Guides for Static Onboarding and Direct Call Onboarding
e Documentation for legacy enablers
e Verify successful onboarding to the API ML
e Verifying service discovery through Discovery Service
e Verifying service discovery through the API Catalog
e Sample REST API Service
Onboarding a REST API service with the Plain Java Enabler (PJE)
Onboarding a REST API service with the Plain Java Enabler (PJE)
* Introduction
Onboarding your REST service with API ML
Prerequisites

Configuring your project
e Gradle build automation system
e Maven build automation system

Configuring your service

e REST service identification
e Administrative endpoints
e APlinfo

e API routing information

e API Catalog information

e Authentication parameters

e API Security

e SAF Keyring configuration

e Eureka Discovery Service

e Custom Metadata

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service
Troubleshooting

e API Mediation Layer onboarding configuration

e API Mediation Layer onboarding configuration

Introduction

Configuring a REST service for API ML onboarding

Plain Java Enabler service onboarding API

e Automatic initialization of the onboarding configuration by a single method call
Validating successful onboarding with the APl Mediation Layer

Loading YAML configuration files

e Loading a single YAML configuration file

e |oading and merging two YAML configuration files

e Onboarding a service with the Zowe API Mediation Layer without an onboarding enabler

e Onboarding a service with the Zowe API Mediation Layer without an onboarding enabler

Introduction

Registering with the Discovery Service

» API Mediation Layer Service onboarding metadata

Sending a heartbeat to APl Mediation Layer Discovery Service
Validating successful onboarding with the APl Mediation Layer
External Resources

e Onboarding a Spring Boot based REST API Service
e Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot

Selecting a Spring Boot Enabler

Configuring your project

e Gradle build automation system

e Maven build automation system

Configuring your Spring Boot based service to onboard with APl ML
e Sample API ML Onboarding Configuration

e Authentication properties

e API ML Onboarding Configuration Sample
» SAF Keyring configuration
e Custom Metadata

Registering and unregistering your service with APl ML
e Unregistering your service with APl ML
e Basic routing

Adding API documentation

Validating the discoverability of your API service by the Discovery Service

Troubleshooting
e Onboarding a Micronaut based REST API service
e Onboarding a Micronaut based REST API service
e Set up your build automation system
¢ Configure the Micronaut application
e Add API ML configuration
e Add Micronaut configuration
e (Optional) Set up logging configuration
¢ Validate successful registration
e Onboarding a Node.js based REST API service
e Onboarding a Node.js based REST API service
e Introduction
¢ Onboarding your Node.js service with APl ML
¢ Prerequisites
¢ |nstalling the npm dependency
e Configuring your service
* Registering your service with API ML
¢ Validating the discoverability of your API service by the Discovery Service
e Onboard a REST API without code changes required
e Onboard a REST API without code changes required
* |dentify the APIs that you want to expose
¢ Define your service and APl in YAML format
e Route your API
e Customize configuration parameters
* Add and validate the definition in the API Mediation Layer running on your machine
¢ Add a definition in the APl Mediation Layer in the Zowe runtime
¢ (Optional) Check the log of the APl Mediation Layer
¢ (Optional) Reload the services definition after the update when the API Mediation Layer is already
started
e Zowe API Mediation Layer Single-Sign-On Overview

Zowe API Mediation Layer Single-Sign-On Overview
e Zowe API ML client
e API service accessed via Zowe APl ML
e Existing services that cannot be modified
e Further resources
Create an Extension for API ML
Create an Extension for API ML
e (Call the REST endpoint for validation
API Mediation Layer Message Service Component
API Mediation Layer Message Service Component
e Message Definition
e Creating a message
e Mapping a message
e API ML Logger
Custom Metadata
Custom Metadata
API Versioning
API Versioning
* Introduction
e Versioning
e REST
e Data Model
e Service and instance
e API Versioning
Implement a new SAF IDT provider
Implement a new SAF IDT provider
* How to create a SAF IDT provider
e How to integrate your extension with APl ML
e How to use the SAF IDT provider
e How to use an existing SAF IDT provider
Zowe API Mediation Layer Security Overview
Zowe API Mediation Layer Security Overview
e How API ML transport security works
e Transport layer security
e Authentication
e Zowe API ML services
e Zowe API ML TLS requirements
e Setting ciphers for APl ML services

e JWT Token
e 7z/OSMF JSON Web Tokens Support
e Authentication for API ML services
e Authentication for API ML services
¢ Services of APl Mediation Layer
¢ Authentication endpoints
e Supported authentication methods
e Authentication with Username/Password
» Authentication with Client certificate
e Authentication with JWT Token
e Authentication with Personal Access Token
¢ Authentication parameters
¢ Authentication providers
e 7/OSMF Authentication Provider
e SAF Authentication Provider
e Dummy Authentication Provider
* Authorization
e Discovery Service authentication
e ZAAS Client
e ZAAS Client
e Pre-requisites
e API Documentation
e Obtain a JWT token (login)
e Validate and get details from the token (query)
e Invalidate a JWT token (logout)
e Obtain a PassTicket (passTicket)
* Getting Started (Step by Step Instructions)
e (Certificate management in Zowe APl Mediation Layer
e (Certificate management in Zowe API Mediation Layer
¢ Running on localhost
e How to start API ML on localhost with full HTTPS
e (Certificate management script
» Generate certificates for localhost
e Generate a certificate for a new service on localhost
e Add a service with an existing certificate to API ML on localhost
e Service registration to Discovery Service on localhost
e Zowe runtime on z/OS

e Import the local CA certificate to your browser

e Generate a keystore and truststore for a new service on z/OS
e Add a service with an existing certificate to API ML on z/OS
Using the Caching Service
Using the Caching Service
» Architecture
e Storage methods
e VSAM
e Redis
e Infinispan
e [nMemory
* How to start the Service
¢ Methods to use the Caching Service API
¢ Configuration properties
e Authentication
e Direct calls
e Routed calls through API Gateway
Using VSAM as a storage solution through the Caching service
Using VSAM as a storage solution through the Caching service
* Understanding VSAM
e VSAM configuration
e VSAM performance
Using Redis as a storage solution through the Caching service
Using Redis as a storage solution through the Caching service
¢ Understanding Redis
* Redis replica instances
e Redis Sentinel
e Redis SSL/TLS
e Redis and Lettuce
¢ Redis configuration
Overview
Overview
e How Zowe Application Framework works
e Tutorials
e Samples
e Sample Iframe App
e Sample Angular App
e Sample React App
e User Browser Workshop Starter App

e Plug-ins definition and structure

e Plug-ins definition and structure

pluginDefinition.json
Application Plugin filesystem structure
* Root files and directories

e Dev and source content

e Runtime content

e Default user configuration

e App-to-App Communication
e Documentation

Location of Plugin files

e pluginsDir directory
Application Dataservices
Application Configuration Data

e Building plugin apps

e Building plugin apps

Building web content

Building app server content

Building zss server content

Tagging plugin files on z/OS

Building Javascript content (*js files)
Installing

Packaging

e |nstalling Plugins

* Installing Plugins

By filesystem

e Adding/Installing

e Removing

e Upgrading

e Modifying without server restart (Exercise to the reader)
By REST API

e Plugin management during development

e Embedding plugins

e Embedding plugins

How to interact with embedded plugin

How to destroy embedded plugin

How to style a container for the embedded plugin
Applications that use embedding

Dataservices

Dataservices

Defining dataservices
Schema

Defining Java dataservices

e Prerequisites

» Defining Java dataservices
» Defining Java Application Server libraries
e Java dataservice logging

e Java dataservice limitations
Using dataservices with RBAC
Dataservice APIs

e Router-based dataservices
e ZSS based dataservices
Documenting dataservices

Authentication API
Authentication API

Handlers
e Handler installation

Handler configuration

Handler context

Handler capabilities

Examples

* High availability (HA)
REST API

e Check status
Authenticate

User not authenticated or not authorized
* Not authenticated

e Not authorized

e Refresh status

e Logout

e Password changes

Internationalizing applications

Internationalizing applications

Internationalizing Angular applications
Internationalizing React applications
Internationalizing application desktop titles

e Zowe Desktop and window management
e Zowe Desktop and window management
¢ Loading and presenting application plug-ins
¢ Plug-in management
¢ Application management
¢ Windows and Viewports
¢ Viewport Manager
* Injection Manager
* Plug-in definition
e Logger

Launch Metadata

Viewport Events

Window Events
e Window Actions
e Framework APl examples
e Configuration Dataservice
e Configuration Dataservice
e Resource Scope
e REST API
e REST query parameters
e REST HTTP methods
e Administrative access and group
e Application API
* Internal and bootstrapping
e Packaging Defaults
¢ Plug-in definition
e Aggregation policies
e Examples
e URI Broker
e URI Broker
* Accessing the URI Broker
e Natively:
e Inaniframe:
e Functions
e Accessing an application plug-in's dataservices
* Accessing application plug-in's configuration resources
e Accessing static content
e Accessing the application plug-in's root

e Server queries
e Application-to-application communication
e Application-to-application communication
e Why use application-to-application communication?
e Actions
e Action target modes
e Action types
e Loading actions
e App2App via URL
e Dynamically
e Saved on system
e Recognizers
* Recognition clauses
e |oading Recognizers at runtime
e Recognizer example
» Dispatcher
e Registry
e Pulling it all together in an example
e Configuring IFrame communication
e Configuring IFrame communication
e Error reporting Ul
e Error reporting Ul
e ZluxPopupManagerService
e ZluxErrorSeverity
e ErrorReportStruct
¢ |mplementation
e Declaration
e Usage
e HTML
e Logging utility
e Logging utility
e Logging objects
e Logger IDs
e Accessing logger objects
e Logger
e Component logger
e Logger API
e Component Logger API

e Log Levels
¢ Logging verbosity
e Configuring logging verbosity
¢ Using log message IDs
e Message ID logging examples
Using Conda to make and manage packages of Application Framework Plugins
Using Conda to make and manage packages of Application Framework Plugins
e |nitial Conda setup
e Managing Conda channels
e Searching for packages
* Using Conda with Zowe
» Setting environment variables temporarily:

Setting environment variables persistently

Installing a Zowe plugin

Zowe plugin configuration

Zowe package structure
» Building Conda packages for Zowe
e Defining package properties
e Creating build step
e Lifecycle scripts
» Adding configuration to Conda packages
Extending Zowe Explorer
Extending Zowe Explorer
Developing for Zowe SDKs
Developing for Zowe SDKs
Zowe Conformance Program
Zowe Conformance Program
e Introduction
e How to participate
e How to suggest updates to the Zowe conformance program
Troubleshooting
Troubleshooting
e Known problems and solutions
e Verifying a Zowe release's integrity
e Understanding the Zowe release
Understanding the Zowe release
Understanding the Zowe release
e Zowe releases

e Patch
e Minor release

e Major release

¢ Check the Zowe release number

Verify Zowe runtime directory

Verify Zowe runtime directory

Troubleshooting Kubernetes environments

Troubleshooting Kubernetes environments

e |SSUE: Deployment and ReplicaSet failed to create pod
e |SSUE: Failed to create services

Troubleshooting API ML
Troubleshooting APl ML

Install APl ML without Certificate Setup

Enable API ML Debug Mode

Change the Log Level of Individual Code Components

Known Issues

e API ML stops accepting connections after z/OS TCP/IP stack is recycled

e SECO0002 error when logging in to API Catalog

e API ML throws I/O error on GET request and cannot connect to other services
e Certificate error when using both an external certificate and Single Sign-On to deploy Zowe
e Browser unable to connect due to a CIPHER error

e API Components unable to handshake

e Java z/OS components of Zowe unable to read certificates from keyring

Error Message Codes

Error Message Codes

e API mediation utility messages

 ZWEAMOOOI

¢ APl mediation common messages

« ZWEAO102E
o ZWEAO104W
e« ZWEAO105W
» ZWEAO106W
» ZWEAO401E

e Common service core messages

» ZWEAM100E
e ZWEAM101E
e ZWEAM102E
o ZWEAM103E

e ZWEAM104E
 ZWEAMA400E
e ZWEAM500W
e ZWEAM5S50TW
e ZWEAM502E
e ZWEAMS503E
e ZWEAM504E
e ZWEAM505E
e ZWEAM506E
e ZWEAMS507E
e ZWEAM508E
e ZWEAM509E
e ZWEAM510E
e ZWEAMSTME
e ZWEAMGOOW
e ZWEAM700E
e ZWEAM701E
Security common messages
e ZWEAT100E
e ZWEAT103E
e ZWEAT403E
o ZWEAT409E
e ZWEAT410E
o ZWEATAME
e ZWEATA12E
o ZWEAT413E
o Z/WEAT4A14E
o ZWEAT415E
e ZWEAT416E
o ZWEAT601E
e ZWEAT602E
e ZWEAT603E
e ZWEAT604E
 ZWEAT605E
e ZWEAT606E
e ZWEAT607E
Security client messages
 ZWEAS100E

e ZWEAS101E
» ZWEAS103E
e ZWEAS104E
e ZWEAS105E
e ZWEAS120E
e ZWEAS121E
e ZWEAS123E
e ZWEAS130E
e ZWEAS131E
ZAAS client messages
e ZWEAS100E
e ZWEAS120E
e ZWEAS121E
o ZWEAS122E
e ZWEAS170E
e ZWEAS400E
e ZWEAS401E
e ZWEAS404E
o ZWEAS417E
e ZWEAS130E
e ZWEAS500E
o ZWEAS501E
e ZWEAS502E
e ZWEAS503E
Discovery service messages
 ZWEAD40OE
e ZWEAD401E
e ZWEAD700W
e ZWEAD701E
e ZWEAD702W
e ZWEAD703E
e ZWEAD704E
Gateway service messages
 ZWEAG500E
e ZWEAG700E
e ZWEAG701E
e ZWEAG702E
e ZWEAG704E

ZWEAG705E
ZWEAG706E
ZWEAG707E
ZWEAG708E
ZWEAG709E
ZWEAG710E
ZWEAG71E
ZWEAG712E
ZWEAG713E
ZWEAG714E
ZWEAG715E
ZWEAG716E
ZWEAG717E
ZWEAG100E
ZWEAG101E
ZWEAG102E
ZWEAG103E
ZWEAG104E
ZWEAG105E
ZWEAG106W
ZWEAG107W
ZWEAG108E
ZWEAG109E
ZWEAG110E
ZWEAG120E
ZWEAG121E
ZWEAS123E
ZWEAG130E
ZWEAG131E
ZWEAG140E
ZWEAG141E
ZWEAG150E
ZWEAG151E
ZWEAG160E
ZWEAG161E
ZWEAG162E
ZWEAG163E
ZWEAG164E

e ZWEAG165E
e ZWEAG166E
e ZWEAG167E
e ZWEAG168E
e ZWEAT607E
API Catalog messages
e ZWEAC100W
e ZWEACI101E
e ZWEAC102E
e ZWEAC103E
e ZWEAC104E
e ZWEAC700E
e ZWEAC701W
e ZWEAC702E
e ZWEAC703E
e ZWEAC704E
e ZWEAC705W
e ZWEAC706E
e ZWEAC707E
e ZWEAC708E
e ZWEAC709E

Raising a Zowe Application Framework issue on GitHub

Raising a Zowe Application Framework issue on GitHub

Raising a bug report

Raising an enhancement report

ZSS Error Message Codes

ZSS Error Message Codes

ZSS informational messages
e ZWES0013lI
e ZWES0014l
e ZWES0035I
e ZWES0039I
e ZWES0061I
e ZWESO0063I
e ZWES0064I
e ZWES1100I
e ZWES1101
e ZWES1102I

e ZWES1600I

e ZWES1601I
e ZSS error messages

e ZWES1006E

e ZWES1034E

e ZWES1036E

e ZWES1037E

e ZWES1065E
e 7SS warning messages

e ZWES1000W

e ZWES1005W

e ZWES1012W

e ZWES1060W

e ZWEST103W

e ZWES1201W

e ZWEST103W

e ZWES1602W

e ZWES1603W

e ZWES1604W

e ZWES1605W

e ZWES1606W
Troubleshooting Zowe CLI
Troubleshooting Zowe CLI
e Problem

e Environment
e Before reaching out for support
¢ Resolving the problem
Gathering information to troubleshoot Zowe CLI
Gathering information to troubleshoot Zowe CLI

Identify the currently installed CLI version

Identify the currently installed versions of plug-ins

Environment variables
e Log levels

e CLIdaemon mode
e Home directory

Home directory structure
e |ocation of logs
e Profile configuration

¢ Node.js and npm

e npm configuration

e npm log files
z/OSMF troubleshooting
z/OSMF troubleshooting
e Alternative methods
Known Zowe CLlI issues
Known Zowe CLI issues
e Zowe commands fail with secure credential errors
¢ Chain commands fail in a batch script
e Command not found message displays when issuing npm install commands
e EACCESS error when issing npm install command
* Installation fails on Oracle Linux 6
¢ Node.js commands do not respond as expected
e npm install -g command fails due to an EPERM error
¢ npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error
* Paths converting in Git Bash
e Sudo syntax required to complete some installations
Raising a CLI issue on GitHub
Raising a CLI issue on GitHub
* Raising a bug report
¢ Raising an enhancement report
Troubleshooting Zowe Explorer
Troubleshooting Zowe Explorer
e Before reaching out for support
Known Zowe Explorer issues
Known Zowe Explorer issues
e Data Set Creation Error
e Opening Binary Files Error
Raising a Zowe Explorer issue on GitHub
Raising a Zowe Explorer issue on GitHub
¢ Raising a bug report
e Submitting a feature request
Troubleshooting Zowe Launcher
Troubleshooting Zowe Launcher
¢ Enable Zowe Launcher Debug Mode
Error Message Codes
Error Message Codes

e Zowe Launcher informational messages
e ZWELOOOM
e ZWELOOO2I
e ZWELOOO3I
e ZWELOO0O04I
e ZWELOOOS5I
e Zowe Launcher error messages
e ZWELOO3O0E
e ZWELOO3S8E
e ZWELOO40E
e ZWELOO47E
Troubleshooting Zowe Chat
Troubleshooting Zowe Chat
e Check the chatServer.log
* Raising a Zowe Chat issue on GitHub
¢ Contacting support via Slack
Troubleshooting Zowe IntelliJ plug-in (incubator)
Troubleshooting Zowe IntelliJ plug-in (incubator)
Contribute to Zowe
Contribute to Zowe
e Report bugs and enhancements
e Fixissues
e Send a Pull Request
* Report security issues
e Contribution guidelines
* Promote Zowe
¢ Helpful resources
Code categories
Code categories
e Programming languages
e Component-specific guidelines and tutorials
General code style guidelines
General code style guidelines
¢ Whitespaces
¢ Naming Conventions
e Functions and methods
» Variables
Pull requests guidelines

Pull requests guidelines
Documentation Guidelines
Documentation Guidelines
e Contributing to external documentation
e Component Categories
» Server Core
e Server Security
* Microservices
e Zowe Desktop Applications
e Web Framework
e CLIPlugins
e Core CLI Imperative CLI Framework
e Programming Languages
e Typescript
e Java
e C
Introduction
Introduction
e Clear
e Consistent
e Smart
Colors
Colors
e Color palette
e Light theme
e Dark theme
* Color contrast | WCAG AA standards
Typography
Typography
e Typeface
e Font weight
e Body copy
* Line scale
e Line-height
e Embed font
e Import font
e Specify in CSS
Grid

Grid
e 12 column grid
e Gutters
e Columns
e Margins
Iconography
Iconography
Application icon
Application icon
e General rules
* Shape, size, and composition
e Colors and shades
» \erify the contrast
e Use the Zowe palette
e |ayer Shadows
* Use the long shadow for consistency.
Contributing to Zowe Documentation
Contributing to Zowe Documentation
» Before You Get Started
e (Getting started checklist
¢ The Zowe documentation repository
¢ Sending a GitHub Pull Request
* Opening an issue for Zowe documentation
¢ Documentation style guide
e Headings and titles
e Technical elements
e Tone
e Word usage
* Abbreviations
e Structure and format
e Word usage
Zowe CLI command reference guide
Zowe CLI command reference guide
Zowe API reference
Zowe API reference
zwe certificate keyring-jcl clean
zwe certificate keyring-jcl clean
¢ Description

¢ |nherited from parent command
e Examples
¢ Parameters

* Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate keyring-jcl connect
zwe certificate keyring-jcl connect
e Description

e |nherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

* Inherited from parent command
zwe certificate keyring-jcl generate
zwe certificate keyring-jcl generate
¢ Description

* Inherited from parent command
e Examples
e Parameters

e |nherited from parent command
e Errors

* Inherited from parent command
zwe certificate keyring-jcl import-ds
zwe certificate keyring-jcl import-ds
e Description

* Inherited from parent command
e Examples
e Parameters

e Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate keyring-jcl
zwe certificate keyring-jcl
e Sub-commands
e Description

¢ |nherited from parent command

e Examples
e Parameters

e Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate pkcs12 create ca
zwe certificate pkcs12 create ca
e Description

e Inherited from parent command
e Examples
¢ Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command
zwe certificate pkcs12 create cert
zwe certificate pkcs12 create cert
e Description

¢ |nherited from parent command
e Examples
e Parameters

e Inherited from parent command
e Errors

* Inherited from parent command
zwe certificate pkcs12 create
zwe certificate pkcs12 create
e Sub-commands

e Inherited from parent command
e Examples
e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zwe certificate pkcs12 export
zwe certificate pkcs12 export
e Description

* Inherited from parent command
e Examples

e Parameters

¢ Inherited from parent command
e Errors

e Inherited from parent command
zwe certificate pkcs12 import
zwe certificate pkcs12 import
¢ Description

* Inherited from parent command
e Examples
e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zwe certificate pkcs12 lock
zwe certificate pkcs12 lock
e Description

* Inherited from parent command
e Examples
e Parameters

e Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate pkcs12 trust-service
zwe certificate pkcs12 trust-service
e Description

e Inherited from parent command
e Examples
¢ Parameters

* Inherited from parent command
e Errors

e |nherited from parent command
zwe certificate pkcs12
zwe certificate pkcs12
e Sub-commands
¢ Description

e |nherited from parent command
e Examples
e Parameters

e |nherited from parent command

e Errors

e Inherited from parent command
zwe certificate verify-service
zwe certificate verify-service
e Description

¢ |nherited from parent command
e Examples
e Parameters

e Inherited from parent command
e Errors

e |nherited from parent command
zwe certificate
zwe certificate
e Sub-commands
e Description
e Examples
e Parameters

e |nherited from parent command
e Errors

* Inherited from parent command
zwe components install extract
zwe components install extract
e Description
e Examples
e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zwe components install process-hook
zwe components install process-hook
e Description
e Examples
e Parameters

e |nherited from parent command
e Errors

* Inherited from parent command
zwe components install

zwe components install

e Sub-commands
¢ Description
e Examples
e Parameters only for this command
e Parameters

e |nherited from parent command
¢ Errors

* Inherited from parent command
zwe components disable
zwe components disable
e Description
e Examples
e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zZwe components enable
Zwe components enable
e Description
e Examples
e Parameters

¢ |nherited from parent command
¢ Errors

* Inherited from parent command
ZWe components
ZWe components
e Sub-commands
e Examples
e Parameters

e |nherited from parent command
e Errors

* Inherited from parent command
zwe init apfauth
zwe init apfauth
e Description
e Examples
e Parameters

¢ |nherited from parent command

e Errors

¢ |nherited from parent command
zwe init certificate
zwe init certificate
e Description
e Examples
e Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command
zwe init mvs
zwe init mvs
e Description
e Examples
¢ Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command
Zwe init security
zwe init security
e Description
e Examples
¢ Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command
zwe init stc
zwe init stc
e Description
e Examples
¢ Parameters

* Inherited from parent command
e Errors

e Inherited from parent command
zwe init vsam
zwe init vsam
e Description
e Examples

e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zwe init
zwe init
e Sub-commands
e Description
e Examples
e Parameters

 Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal config get
zwe internal config get
e Description

¢ Inherited from parent command
e Examples
e Parameters

* Inherited from parent command
e Errors

e |nherited from parent command
zwe internal config set
zwe internal config set
e Description

e |nherited from parent command
e Examples
e Parameters
e Errors

e |nherited from parent command
zwe internal config
zwe internal config
e Sub-commands

¢ |nherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal container cleanup
zwe internal container cleanup
e Description

e Inherited from parent command
e Parameters

* Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal container init
zwe internal container init
e Description

¢ Inherited from parent command
e Parameters

* Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal container prestop
zwe internal container prestop
e Description

e Inherited from parent command
e Parameters

 Inherited from parent command
e Errors

e Inherited from parent command
zwe internal container
zwe internal container
e Sub-commands

Description
¢ |nherited from parent command

Parameters
* Inherited from parent command
e Errors

¢ |nherited from parent command
zwe internal start component
zwe internal start component

¢ Inherited from parent command
e Examples

e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zwe internal start prepare
zwe internal start prepare

 Inherited from parent command
e Examples
e Parameters

¢ |nherited from parent command
¢ Errors

* Inherited from parent command
zwe internal start
zwe internal start
e Sub-commands

* Inherited from parent command
e Examples
e Parameters

e Inherited from parent command
e Errors

e Inherited from parent command
zwe internal get-launch-components
zwe internal get-launch-components
e Description

¢ Inherited from parent command
e Examples
e Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command
zwe internal
zwe internal
e Sub-commands
¢ Description
e Examples
e Parameters

¢ |nherited from parent command
e Errors

¢ Inherited from parent command
zwe migrate for kubernetes
zwe migrate for kubernetes
e Description
e Parameters

¢ |nherited from parent command
e Errors

* Inherited from parent command
zwe migrate for
zwe migrate for
e Sub-commands
e Parameters

e Inherited from parent command
e Errors

* Inherited from parent command
zZwe migrate
zwe migrate
e Sub-commands
e Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command
zwe sample sub deep
zwe sample sub deep
e Description
e Examples
¢ Parameters

* Inherited from parent command
e Errors

e |nherited from parent command
zwe sample sub second
zwe sample sub second
e Description
e Examples
¢ Parameters

* Inherited from parent command
e Errors

¢ |nherited from parent command

e zwe sample sub
e zwe sample sub
e Sub-commands
e Description
¢ Inherited from parent command
e Examples
¢ Parameters
* Inherited from parent command
e Errors
¢ |nherited from parent command
e zwe sample test
e zwe sample test
e Description
e Examples
¢ Parameters
* Inherited from parent command
e Errors
¢ |nherited from parent command
e zwe sample
e zwe sample
e Sub-commands
e Description
e Examples
e Parameters
¢ Inherited from parent command
e Errors
* Inherited from parent command
e zwe support verify-fingerprints
e zwe support verify-fingerprints
e Parameters
e Inherited from parent command
e Errors
e Inherited from parent command
e zwe support
e zwe support
e Sub-commands
e Description
e Parameters

¢ Inherited from parent command
e Errors

e |nherited from parent command
zwe install
zwe install
e Description
e Examples
e Parameters

e Inherited from parent command
e Errors

e |nherited from parent command
zwe start
zwe start
¢ Description
e Examples
e Parameters

e Inherited from parent command
e Errors

e Inherited from parent command
zwe stop
Zwe stop
¢ Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

* Inherited from parent command
Zwe version
Zwe version
e Description
e Examples
e Parameters

e Inherited from parent command
e Errors

¢ Inherited from parent command
zwe
zwe

e Sub-commands

Description

Examples

Parameters

e Errors

Zowe Chat command reference overview
Zowe Chat command reference overview
zos job list status

Zos job list status

e Usage

e Positional Arguments
e Options

e Examples

zos dataset list status
zos dataset list status

e Usage

e Positional Arguments
e Options

e Examples

zos dataset list member
zos dataset list member
e Usage

e Positional Arguments
e Options

e Examples

zos file list status

zos file list status

e Usage

e Positional Arguments
e Options

e Examples

zos file list mounts

zos file list mounts

e Usage

e Positional Arguments
e Options

e Examples

zos command issue console

zos command issue console

e Usage
e Positional Arguments
e Options
e Examples
zos help list command
zos help list command
e Usage
* Positional Arguments
e Examples
Zowe YAML configuration file reference
Zowe YAML configuration file reference
» High-level overview of YAML configuration file
e Extract sharable configuration out of zowe.yam|
e Configuration override
e YAML configurations - certificate
e YAML configurations - zowe
* YAML configurations - java
e YAML configurations - node
e YAML configurations - zOSMF
* YAML configurations - components
* YAML configurations - halnstances
e Auto-generated environment variables
e Troubleshooting your YAML with the Red Hat VS Code extension
Server component manifest file reference
Server component manifest file reference
Bill of Materials
Bill of Materials

Version: v2.4.x LTS

Zowe overview

Zowe™ is an open source software framework that allows mainframe development and operation teams to
securely manage, control, script, and develop on the mainframe. It was created to host technologies that
benefit the IBM Z platform for all members of the Z community, including Integrated Software Vendors
(ISVs), System Integrators, and z/OS consumers. Like Mac or Windows, Zowe comes with a set of APIs and
OS capabilities that applications build on and also includes some applications out of the box. Zowe offers
modern interfaces to interact with z/OS and allows you to work with z/OS in a way that is similar to what you
experience on cloud platforms today. You can use these interfaces as delivered or through plug-ins and
extensions that are created by clients or third-party vendors. Zowe is a project within the Open Mainframe

Project.

Zowe demo video

Watch this video to see a quick demo of Zowe.

Download the deck for this video | Download the script

Component overview

https://www.youtube.com/embed/NX20ZMRoTtk
https://docs.zowe.org/assets/files/Zowe_introduction_video_deck-fbb2a23bfe28dd10f5a003a305350c92.pptx
https://docs.zowe.org/assets/files/Zowe_introduction_video_script-cd119a2662821b55ad9bb5108f40f261.txt

Zowe consists of the following components:

e Zowe Application Framework

e API| Mediation Layer

e Zowe CLI

e Zowe Explorer

e Zowe Client Software Development Kits SDKs
e Zowe Launcher

e ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe Application Framework

A web user interface (Ul) that provides a virtual desktop containing a number of apps allowing access to
z/OS function. Base Zowe includes apps for traditional access such as a 3270 terminal and a VT Terminal, as
well as an editor and explorers for working with JES, MVS Data Sets and Unix System Services.

Ll Learn more

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe
Application Framework, you can create applications to suit your specific needs. The Zowe Application
Framework contains a web Ul that has the following features:

e The web Ul works with the underlying REST APIs for data, jobs, and subsystem, but presents the
information in a full screen mode as compared to the command line interface.

e The web Ul makes use of leading-edge web presentation technology and is also extensible through
web Ul plug-ins to capture and present a wide variety of information.

* The web Ul facilitates common z/OS developer or system programmer tasks by providing an editor
for common text-based files like REXX or JCL along with general purpose data set actions for both
Unix System Services (USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:
e Zowe Desktop

The desktop, accessed through a browser. The desktop contains a number of applications,
including a TN3270 emulator for traditional Telnet or TLS terminal access to z/OS, a VT Termnial for
SSH commands, as well as rich web GUI applications including a JES Explorer for working with jobs
and spool output, a File Editor for working with USS directories and files and MVS data sets and
members. The Zowe desktop is extensible and allows vendors to provide their own applications to

run within the desktop. See Extending the Zowe Desktop. The following screen capture of a Zowe
desktop shows some of its composition as well as the TN3270 app, the JES Explorer, and the File

Editor open and in use.

COPYJOB - Editor

X =0 TN3270 - localhost:992

File Explorer

Hast localhost

3 Moed 2(24x80) % .

4 WINCHJ =2, o =1, Column gg International EBCDIC 1047
& WINCHJLJCL
[BEER
I BOBBY
[CAT
& COFFEE
L coPY.08 |
[FISH
W FRIDAY
[FROM
& NEW?
BT

B WINCH.) JCL DEMO
I WINCHJ PARMLIB

evenh/ 185

JES Explorer

¥ s Explorer

L}

MVS Explorer

Available
Apps

had JES Explorer

@~

Amdy APl Catalog

evenh/ 1058/ ing

00O wuu

e Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js
server plus the Express.js as a webservices framework, and the proxy applications that
communicate with the z/OS services and components.

e ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server. For
services that need to run as APF authorized code, Zowe uses an angel process that the ZSS Server
calls using cross memory communication. During installation and configuration of Zowe, you will
see the steps needed to configure and launch the cross memory server.

» Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe
Application Framework application plug-ins.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/stable/user-guide/mvd-using#zowe-desktop-application-plug-ins

API Mediation Layer

Provides a gateway that acts as a reverse proxy for z/OS services, together with a catalog of REST APIs and
a dynamic discovery capability. Base Zowe provides core services for working with MVS Data Sets, JES, as

well as working with zZOSMF REST APIs. The APl Mediation Layer also provides a framework for Single Sign
On (SSO).

Ll Learn more

The API Mediation Layer provides a single point of access for mainframe service REST APIs. The layer
offers enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery,
consistent security, a single sign-on experience, and documentation. The APl Mediation Layer facilitates
secure communication across loosely coupled microservices through the APl Gateway. The API
Mediation Layer consists of three components: the Gateway, the Discovery Service, and the Catalog.
The Gateway provides secure communication across loosely coupled API services. The Discovery
Service enables you to determine the location and status of service instances running inside the APl ML
ecosystem. The Catalog provides an easy-to-use interface to view all discovered services, their
associated APIs, and Swagger documentation in a user-friendly manner.

Key features

* Consistent Access: API routing and standardization of API service URLs through the Gateway
component provides users with a consistent way to access mainframe APIs at a predefined
address.

e Dynamic Discovery: The Discovery Service automatically determines the location and status of API
services.

e High-Availability: APl Mediation Layer is designed with high-availability of services and scalability in
mind.

e Caching Service: This feature is designed for Zowe components in a high availability configuration.
It supports the High Availability of all components within Zowe, allowing components to be stateless
by providing a mechanism to offload their state to a location accessible by all instances of the
service, including those which just started.

e Redundancy and Scalability: API service throughput is easily increased by starting multiple API
service instances without the need to change configuration.

* Presentation of Services: The API Catalog component provides easy access to discovered API
services and their associated documentation in a user-friendly manner. Access to the contents of
the API Catalog is controlled through a z/OS security facility.

e Encrypted Communication: API ML facilitates secure and trusted communication across both
internal components and discovered API services.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-sso

API Mediation Layer architecture

The following diagram illustrates the single point of access through the Gateway, and the interactions

between API ML components and services:

User accesses API

service via API
client (Example:
Zowe CLI)

—> API Client

User

services through

User accesses API

API Client

Caching Service

API Service can
store state in
Caching Service

_________________________________>

call z/OS

API's even when
running off z/OS

z/OS low level service
(ZSS or other)

Gateway accesses API
services through
Gateway
Gateway can store
Registers / state in Caching
)) Heartbeats) Service
—» Discovery Service Gateway Service F----------- >
:
Routed to via :
Gateway User authentication '
l & authorization '
1
1
:
Authentication & :
API Catalog L : '
Authorization service :
:
Routed to via :
Gateway '
1
1
l :
Registers / 1
Heartbeats '
API Service ;
1
. Can
1
1
1
:
z/OS Product RREE
Components

The API Layer consists of the following key components:

API Gateway

Services that comprise the API ML service ecosystem are located behind a gateway (reverse proxy). All
end users and API client applications interact through the Gateway. Each service is assigned a unique
service ID that is used in the access URL. Based on the service ID, the Gateway forwards incoming API
requests to the appropriate service. Multiple Gateway instances can be started to achieve high-
availability. The Gateway access URL remains unchanged. The Gateway is built using Netflix Zuul and
Spring Boot technologies.

Discovery Service

The Discovery Service is the central repository of active services in the API ML ecosystem. The
Discovery Service continuously collects and aggregates service information and serves as a repository
of active services. When a service is started, it sends its metadata, such as the original URL, assigned
serviceld, and status information to the Discovery Service. Back-end microservices register with this
service either directly or by using a Eureka client. Multiple enablers are available to help with service on-
boarding of various application architectures including plain Java applications and Java applications that
use the Spring Boot framework. The Discovery Service is built on Eureka and Spring Boot technology.

Discovery Service TLS/SSL

HTTPS protocol can be enabled during APl ML configuration and is highly recommended. Beyond
encrypting communication, the HTTPS configuration for the Discovery Service enables heightened
security for service registration. Without HTTPS, services provide a username and password to register
in the API ML ecosystem. When using HTTPS, only trusted services that provide HTTPS certificates
signed by a trusted certificate authority can be registered.

API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The
Catalog provides both the REST APIs and a web user interface (Ul) to access them. The web Ul follows
the industry standard Swagger Ul component to visualize APl documentation in OpenAPI JSON format
for each service. A service can be implemented by one or more service instances, which provide exactly

the same service for high-availability or scalability.
Catalog Security

Access to the API Catalog can be protected with an Enterprise z/OS Security Manager such as IBM
RACF, ACF2, or Top Secret. Only users who provide proper mainframe credentials can access the
Catalog. Client authentication is implemented through the z/OSMF API.

Caching Service

It provides an API in high-availability mode which offers the possibility to store, retrieve and delete data
associated with keys. The service will be used only by internal Zowe applications and will not be
exposed to the internet.

Metrics Service (Technical Preview)

The Metrics Service provides a web user interface to visualize requests to APl Mediation Layer services.
HTTP metrics such as number of requests and error rates are displayed for each API Mediation Layer
service. This service is currently in technical preview and is not ready for production.

Onboarding APIs

Essential to the API Mediation Layer ecosystem is the API services that expose their useful APIs. Use the
following topics to discover more about adding new APIs to the APl Mediation Layer and using the API
Catalog:

Onboarding Overview

Onboard an existing Spring Boot REST API service using Zowe APl Mediation Layer

Onboard an existing Node.js REST API service using Zowe API Mediation Layer

Using API Mediation Layer

To learn more about the architecture of Zowe, see Zowe architecture.

Zowe CLI

Zowe CLI is a command-line interface that lets you interact with the mainframe in a familiar, off-platform
format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing mainframe
applications, and exploit the ease-of-use of off-platform tools. Zowe CLI lets you use common tools such as
Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools for mainframe
development. Though its ecosystem of plug-ins, you can automate actions on systems such as IBM Db2,
IBM CICS, and more. It provides a set of utilities and services for users that want to become efficient in
supporting and building z/OS applications quickly.

Ll Learn more
Zowe CLI provides the following benefits:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://docs.zowe.org/stable/getting-started/zowe-architecture

e Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS

applications.

e Fosters the development of new and innovative tools from a computer that can interact with z/OS.
Some Zowe extensions are powered by Zowe CLI, for example the Visual Studio Code Extension for

Zowe.

* Ensure that business critical applications running on z/OS can be maintained and supported by
existing and generally available software development resources.

* Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about software requirements, installing, and upgrading Zowe CLI, see Installing

Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

* Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets)
directly from Zowe CLI.

* Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and
download the output automatically.

e |Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe
directly from Zowe CLI.

* Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local
tasks.

e Produce responses as JSON documents: Return data in JSON format on request for
consumption in other programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe
CLI.

More Information:

e System requirements for Zowe CLI

 |Installing Zowe CLI

https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-installcli

Zowe Explorer

Zowe Explorer is a Visual Studio Code extension that modernizes the way developers and system
administrators interact with z/OS mainframes. Zowe Explorer lets you interact with data sets, USS files, and
jobs that are stored on z/OS. The extension complements your Zowe CLI experience and lets you use
authentication services like APl Mediation Layer. The extension provides the following benefits:

e Enabling you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

e Enabling you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

e Providing a more streamlined way to access data sets, uss files, and jobs.

e Letting you create, edit, and delete Zowe CLI zosmf compatible profiles.

e Letting you use the Secure Credential Store plug-in to store your credentials securely in the settings.

e Letting you leverage the APl Mediation Layer token-based authentication to access z/OSMF.

For more information, see Information roadmap for Zowe Explorer.

Zowe Client Software Development Kits (SDKs)

The Zowe Client SDKs consist of programmatic APIs that you can use to build client applications or scripts
that interact with z/OS. The following SDKs are available:

e Zowe Node.js Client SDK
e Zowe Python Client SDK

For more information, see Using the Zowe SDKs.

Zowe Launcher

Provides an advanced launcher for Zowe z/OS server components in a high availability configuration. It
performs the following operations:

e Stopping the Zowe server components using the STOP (or P) operator command

e Stopping and starting specific server components without restarting the entire Zowe instance using
MODIFY (or F) operator command

Zowe Chat (Technical Preview)

https://docs.zowe.org/stable/getting-started/user-roadmap-zowe-explorer
https://docs.zowe.org/stable/user-guide/sdks-using

Zowe Chat is a chatbot that aims to enable a ChatOps collaboration model including z/OS resources and
tools. Zowe Chat enables you to interact with the mainframe from chat clients such as Slack, Microsoft
Teams, and Mattermost. Zowe Chat helps to increase your productivity by eliminating or minimizing the
context switching between different tools and user interfaces.

Ll Learn more
Zowe Chat key features

* Manage z/OS resource in chat tool channels

Check your z/OS job, data set, and USS files status directly in chat tool channels. You can also issue
z/OS console commands directly in the chat tool. You can drill down on a specific job, data set,
error code, and so on to get more details through button or drop-down menu that Zowe Chat
provides.

e Execute Zowe CLI commands in chat tool channels

You can also issue Zowe CLI commands to perform operations such as help and z/OS resource
management including z/OS job, data set, USS file, error code, and console command.
Theoretically, most of Zowe CLI commands are supported as long as it is executable with single-
submit.

» Extensibility

Zowe Chat is extensible via plug-ins. You can extend Zowe Chat by developing plug-ins and
contributing code to the base Zowe Chat or existing plug-ins.

e Security:

Zowe Chat makes use of z/OS SAF calls and supports the three main security management
products on z/OS (RACF, Top Secret, ACF2). You can log in to the chat client via enterprise
standards, including two factor authentication if required. The first time you issue a command to
the Zowe Chat installed in the chat workspace, it prompts you to log in with the mainframe ID using
a one-time URL. Once authenticated against the mainframe security, Zowe Chat securely caches in
memory the relationship between your Chat tool ID and the mainframe ID. Zowe Chat’s Security
Facility will generate credentials for downstream API requests.

* Display alerts:

Allows you to send alert or event to a channel in the chat tool in use. An event data model enables
Zowe Chat extenders to send alerts to a channel in the chat through Zowe Chat.

Read the following blogs to learn more about Zowe Chat:

e Zowe Gets Chatty
e Zowe Chat can make you more productive: user scenarios

Zowe Chat architecture

Zowe Chat is based on the Common Bot framework, which is required for the chat platform Slack,
Mattermost, and Microsoft Teams.

@ ..l.

MatterMost Slack

Chat Tools

Common Bot Framework

z
Chat Bot Interface / SDK Listener } ‘ Router J Messaging App

!

Zowe Chat
core (chat)
Zowe Chat Functions Natural
Security Plug-ins Language
TS| >
clicmd Extension Plugins
5)
v v
Microservice Zowe Cllent SDK Zowe CLI commands on Zowe Chat Server
2/0SMF Core CLI Core Extensions Extension
FI JES REST API -
Zowe Interface / SDK n n o Plugins
e e][] []

For more information, see Installing Zowe Chat and Using Zowe Chat.

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Provides re-usable and industry compliant JSON formatted RMF/SMF data records, so that many other ISV
SW and users can exploit them using open-source SW for many ways.

https://medium.com/zowe/zowe-gets-chatty-842e3b548902
https://medium.com/zowe/zowe-chat-can-make-you-more-productive-user-scenarios-f52a9985dd50
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_install_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_use_interact_methods

For more information, see the ZEBRA documentation or visit the ZEBRA test/trial site.

Zowe Workflow wiZard - Incubator

The Workflow wiZard delivers a workflow builder which simplifies the creation of zZOSMF workflows. The
workflow builder reads a library of templates along with a set of properties, determines which steps are
necessary based upon rules that use property values, determines a suitable order to satisfy the workflow
engine requirements, inserts variable definitions when required, and outputs workflow XML.

For more information, see the Workflow Template Reference.

Zowe IntelliJ Plug-in - Incubator

Zowe IntelliJ plug-in for Intellij-based IDEs is a smart and interactive mainframe code editing tool that allows
you to browse, edit, and create data on z/OS via z/JOSMF REST API.

Zowe IntelliJ plug-in helps you to:

e Start working with z/OS easily with no complex configurations.

* Organize datasets on z/OS, files on USS into working sets.

¢ Allocate datasets, create members, files and directories with different permissions.
e Perform operations like renaming, copying and moving data in a modern way.

e Edit datasets, files and members. Smart auto-save will keep your content both in the editor and on the
mainframe in-sync.

* Create multiple connections to different z/OS systems.
e Perform all available operations with jobs.

e Highlight all IntelliJ supported languages automatically and recognize them once opened from the
mainframe.

For more information, see Using Zowe IntelliJ plug-in.

Zowe Third-Party Software Requirements and Bill of
Materials

e Third-Party Software Requirements (TPSR)
e Bill of Materials (BOM)

https://github.com/zowe/zebra/tree/main/Documentation
https://zebra.talktothemainframe.com/
https://github.com/zowe/workflow-wizard/raw/main/doc/Workflow%20Templates%20Reference.docx
https://docs.zowe.org/stable/user-guide/intellij-using
https://github.com/zowe/docs-site/blob/master/tpsr/tpsr-v2.4.x.md
https://docs.zowe.org/stable/appendix/bill-of-materials

Version: v2.4.x LTS

Zowe architecture

Zowe™ is a collection of components that together form a framework that makes Z-based functionality
accessible across an organization. Zowe functionality includes exposing Z-based components, such as
z/OSMF, as REST APIs. The Zowe framework provides an environment where other components can be
included and exposed to a broader non-Z based audience.

The following diagram illustrates the high-level Zowe architecture.

The diagram shows the default port numbers that are used by Zowe. These are dependent on each instance
of Zowe and are held in the Zowe YAML configuration file.

Zowe components can be categorized by location: server or client. While the client is always an end-user
tool such as a PC, browser, or mobile device, the server components can be further categorized by what
machine they run on.

Zowe server components can be installed and run entirely on z/OS, but a subset of the components can
alternatively run on Linux or z/Linux via Docker. While on z/OS, many of these components run under UNIX
System Services (USS). The components that do not run under USS must remain on z/OS when using
Docker in order to provide connectivity to the mainframe.

Zowe architecture with high availability enablement on
Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into
a Sysplex with high availability enabled as opposed to running all components on a single z/OS system.

Zowe has high availability feature build-in. To enable this feature, you can define halInstances sectionin

your YAML configuration file.

The diagram above shows that ZWESLSTC has started two Zowe instances running on two separate LPARs

that can be on the same or different sysplexes.

e The Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared so that incoming
requests can be routed to either the gateway on LPAR A or LPAR B.

e The discovery servers on each LPAR communicate with each other and share their registered instances,
which allows the API gateway on LPAR A to dispatch APIs to components either on its own LPAR, or
alternatively to components on LPAR B. As indicated on the diagram, each component has two input
lines: one from the API gateway on its own LPAR and one from the gateway on the other LPAR. When
one of the LPARs goes down, the other LPAR remains operating within the sysplex providing high
availability to clients that connect through the shared port irrespective of which Zowe instance is
serving the API requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start
more than one Zowe instance on a single LPAR, thereby providing a grid cluster of Zowe components that
can meet availability and scalability requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This
configuration mechanism makes it possible to start just the desktop and APl Mediation Layer on the first
LPAR, and start all of the Zowe components on the second LPAR. Because the desktop on the first LPAR is
available to the gateway of the second LPAR, all desktop traffic is routed there.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex,
are connected to each other by the same shared VSAM data set. This arrangement allows state sharing so
that each instance behaves similarly to the user irrespective of where their request is routed.

For simplification of the diagram above, the Jobs and Files API servers are not shown as being started. If the
user defines Jobs and Files API servers to be started in the zowe.yaml configuration file, these servers
behave the same as the servers illustrated. In other words, these services register to their API discovery
server which then communicates with other discovery servers on other Zowe instances on either the same
or other LPARs. The API traffic received by any API gateway on any Zowe instance is routed to any of the
Jobs or Files APl components that are available.

To learn more about Zowe with high availability enablement, see Configuring Sysplex for high availability.

Zowe architecture when running in Kubernetes cluster

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into
a Kubernetes cluster as opposed to running all components on a single z/OS system.

https://docs.zowe.org/stable/user-guide/configure-sysplex

When deploying other server components into container orchestration software like Kubernetes, Zowe
follows standard Kubernetes practices. The cluster can be monitored and managed with common
Kubernetes administration methods.

e All Zowe workloads run on a dedicated namespace (zowe by default) to distinguish from other

workloads in same Kubernetes cluster.
e Zowe hasitsown ServiceAccount to help with managing permissions.

e Server components use similar zowe.yaml on z/OS, which are stored in ConfigMap and Secret ,
to configure and start.

e Server components can be configured by using the same certificates used on z/OS components.
e Zowe claimsits own Persistent Volume to share files across components.

e Each server component runs in separated containers.

e Components may register themselves to Discovery with their own Pod name within the cluster.

e Zowe workloads use the zowe-launch-scripts initContainers step to prepare required

runtime directories.

¢ Only necessary components ports are exposed outside of Kubernetes with Service .

App Server

The App Server is a node.js server that is responsible for the Zowe Application Framework. This server
provides the Zowe desktop, which is accessible through a web browser via port 7556. The Zowe desktop
includes a number of applications that run inside the Application Framework such as a 3270 emulator and a
File Editor.

The App Server server logs write to <zowe. logDirectory>/appServer-yyyy-mm—-dd—hh—-mm. log .

The Application Framework provides REST APIs for its services that are included on the API catalog tile
Zowe Application Framework that can be viewed at
https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/ZLUX/zlux .

ZSS

The Zowe desktop delegates a number of its services to the ZSS server which it accesses through the http
port 7557. ZSS is written in C and has native calls to z/OS to provide its services. ZSS logs write to STDOUT

and STDERR for capture into job logs, but also as a file into <zowe. logDirectory>/zssServer-yyyy-

mm-dd—hh-mm. log .

APl Gateway

The API Gateway is a proxy server that routes requests from clients on its northbound edge, such as web
browsers or the Zowe command line interface, to servers on its southbound edge that are able to provide
data to serve the request. The API Gateway is also responsible for generating the authentication token used
to provide single sign-on (SSO) functionality. The APl Gateway homepage is

https://<ZOWE_HOST_IP>:7554 . Following authentication, this URL enables users to navigate to the
API Catalog.

API Catalog

The API Catalog provides a list of the API services that have registered themselves as catalog tiles. These
tiles make it possible to view the available APIs from Zowe's southbound servers, as well as test REST API
calls.

API Discovery

The API Discovery server acts as the registration service broker between the APl Gateway and its
southbound servers. This server can be accessed through the URL https://<ZOWE_HOST_IP>:7552
making it possible to view a list of registered API services on the API discovery homepage.

Caching service

The Caching service aims to provide an APl which offers the possibility to store, retrieve, and delete data
associated with keys. The service is used only by internal Zowe applications and is not exposed to the
internet. The Caching service URL is https://<ZOWE_HOST_IP>:7555 . For more information about the

Caching service, see the Caching service documentation.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-caching-service

Desktop Apps

Zowe provides a number of rich GUI web applications for working with z/OS. Such applications include the
Editor for files and datasets, the JES Explorer for jobs, and the IP Explorer for the TCPIP stack. You can
access them through the Zowe desktop.

File APl and JES API

The File API server provides a set of REST APIs for working with z/OS data sets and Unix files. These APIs
can be abled in zowe server configuration.

The JES API server provides a set of REST APIs for working with JES. These APIs can be abled in zowe
server configuration.

Both the File APl and JES API servers are registered as tiles on the API Catalog, so users can view the
Swagger definition and test API requests and responses.

Cross Memory server

The Cross Memory server is a low-level privileged server for managing mainframe data securely. For security
reasons, it is not an HTTP server. Instead, this server has a trust relationship with ZSS. Other Zowe
components can work through ZSS in order to handle z/OS data that would otherwise be unavailable or
insecure to access from higher-level languages and software.

Unlike all of the servers described above which run under the ZWESLSTC started task as address spaces
for USS processes, the Cross Memory server has its own separate started task ZWESISTC and its own user
ID ZWESIUSR that runs the program ZWESISO1 .

Version: v2.4.x LTS

FAQ: Zowe and components

Check out the following FAQs to learn more about the purpose and function of Zowe™.

e Zowe FAQ
e Zowe CLI FAQ
e Zowe Explorer FAQ

Zowe FAQ

What is Zowe?

Ll Click to hide answer

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation.

The Zowe project provides modern software interfaces on IBM z/OS to address the needs of a variety of
modern users. These interfaces include a new web graphical user interface, a script-able command-line
interface, extensions to existing REST APIs, and new REST APIs on z/OS.

Who is the target audience for using Zowe?

LU Click to hide answer

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target
audience is primarily application developers and system programmers, but the Zowe Application
Framework is the basis for developing web browser interactions with z/OS that can be used by anyone.

What language is Zowe written in?

LI Click to hide answer
Zowe consists of several components. The primary languages are Java and JavaScript. Zowe CLI and
Desktop are written in TypeScript. ZSS is written in C, while the cross memory server is written in metal

https://www.openmainframeproject.org/
https://www.linuxfoundation.org/

What is the licensing for Zowe?

LI Click to hide answer
Zowe source code is licensed under EPL2.0. For license text click here and for additional information
click here.

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source
code and you distribute that code or binaries built from that code outside your company, you must make
the source code available under the EPL-2.0."

Why is Zowe licensed using EPL2.0?

LU Click to hide answer

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community
share new source code across the Zowe ecosystem. The open source code can be used by anyone,
provided that they adhere to the licensing terms.

What are some examples of how Zowe technology might be used by z/OS products
and applications?

LI Click to hide answer
The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical
dashboards that monitor data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or
for writing complex scripts for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to
interact with z/OS services.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

What is the best way to get started with Zowe?

LLI Click to hide answer

Zowe provides a convenience build that includes the components released-to-date, as well as IP being
considered for contribution, in an easy to install package on Zowe.org. The convenience build can be
easily installed and the Zowe capabilities seen in action.

To install the complete Zowe solution, see Installing Zowe.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start.

What are the prerequisites for Zowe?

Ll Click to hide answer

Prerequisites vary by component used, but in most cases the primary prerequisites are Java and
NodeJS on z/OS and the z/OS Management Facility enabled and configured. For a complete list of
software requirements listed by component, see System requirements for z/OS components and
System requirements for Zowe CLI.

What's the difference between using Zowe with or without Docker?

LI Click to hide answer

Docker is a download option for Zowe that allows you to run certain Zowe server components outside of
z/OS. The Docker image contains the Zowe components that do not have the requirement of having to
run on z/OS: The App server, APl Mediation Layer, and the USS/MVS/JES Explorers.

Configurating components with Docker is similar to the procedures you would follow without Docker,
however tasks such as installation and running with Docker are a bit different, as these tasks become
Linux oriented, rather than utilizing Jobs and STCs.

NOTE: z/OS is still required when using the Docker image. Depending on which components of Zowe
you use, you'll still need to set up z/OS Management Facility as well as Zowe's ZSS and Cross memory

servers.

https://zowe.org/
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/systemrequirements-cli

Is the Zowe CLI packaged within the Zowe Docker download?

LI Click to hide answer

At this time, the Docker image referred to in this documentation contains only Zowe server components.
It is possible to make a Docker image that contains the Zowe CLI, so additional Zowe content, such as
the CLI, may have Docker as a distribution option later.

If you are interested in improvements such as this one, please be sure to express that interest to the
Zowe community!

Does ZOWE support z/OS ZIIP processors?

Ll Click to hide answer

Only the parts of Zowe that involve Java code are ZIIP enabled. The APl Mediation Layer composed of
the API Gateway, Discovery and Catalog servers along with any Java-based services that work with
them such as the Jobs and Datasets servers are ZIIP enabled. Also, the CLI and VSCode Explorer make
large use of z/JOSMF, which is Java so they are ZIIP enabled as well. More details on portions of Zowe
which are Java (ZIIP) enabled can be found here.

This leaves C and NodeJS code which are not ZIIP enabled, BUT, we have a tech preview available
currently that allows execution of Java as well as NodeJS code, on Linux or zLinux via Docker. With the
tech preview, only the C code remains on z/OS, which is not ZIIP enabled.

How is access security managed on z/OS?

LI Click to hide answer

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?

https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://www.zowe.org/download.html

LU Click to hide answer

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has
read access. "Committers" on the project have authority to alter the source code to make fixes or
enhancements. A list of Committers is documented in Committers to the Zowe project.

How do | get involved in the open source development?

LI Click to hide answer
The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin
learning about the current capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the
Zowe Community GitHub repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Extending on
Zowe Docs.

When will Zowe be completed?

LI Click to hide answer
Zowe will continue to evolve in the coming years based on new ideas and new contributions from a
growing community.

Can | try Zowe without a z/OS instance?

Ll Click to hide answer

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about
adding new applications to the Zowe Desktop and and how to enable communication with other Zowe
components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build
and sandbox environment.

https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see
Configuring z/OSMF Lite on Zowe Docs.

Zowe CLI FAQ

Why might | use Zowe CLI versus a traditional ISPF interface to perform mainframe
tasks?

Ll Click to hide answer

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF
interface. Zowe CLI lets developers be productive from day-one by using familiar tools. Zowe CLI also
lets developers write scripts that automate a sequence of mainframe actions. The scripts can then be
executed from off-platform automation tools such as Jenkins automation server, or manually during
development.

With what tools is Zowe CLI compatible?

LI Click to hide answer

Zowe ClLI is very flexible; developers can integrate with modern tools that work best for them. It can
work in conjunction with popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe
CLI runs on a variety of operating systems, including Windows, macOS, and Linux. Zowe CLI scripts can
be abstracted into automation tools such as Jenkins and TravisCI.

Where can | use the CLI?

LI Click to hide answer

Usage Scenario Example

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite

Usage Scenario

Interactive use, in a
command prompt or bash
terminal.

Interactive use, in an IDE
terminal

Scripting, to simplify
repetitive tasks

Scripting, for use in
automated pipelines

Example

Perform one-off tasks such as submitting a batch job.

Download a data set, make local changes in your editor, then upload

the changed dataset back to the mainframe.

Write a shell script that submits a job, waits for the job to complete,
then returns the output.

Add a script to your Jenkins (or other automation tool) pipeline to
move artifacts from a mainframe development system to a test
system.

Which method should | use to install Zowe CLI?

LI Click to hide answer

You can install Zowe CLI using the following methods:

* Local package installation: The local package method lets you install Zowe CLI from a zipped file

that contains the core application and all plug-ins. When you use the local package method, you

can install Zowe CLI in an offline environment. We recommend that you download the package and

distribute it internally if your site does not have internet access.

* Online NPM registry: The online NPM (Node Package Manager) registry method unpacks all of the

files that are necessary to install Zowe CLI using the command line. When you use the online

registry method, you need an internet connection to install Zowe CLI

How can | get Zowe CLI to run faster?

LI Click to hide answer

e Zowe CLI runs significantly faster when you run it in daemon mode. Daemon mode significantly
improves the performance of Zowe CLI commands by running Zowe CLI as a persistent
background process. For more information, see Using daemon mode.

How can | manage profiles for my projects and teams?

Ll Click to hide answer
e Zowe CLI V2 introduces team profiles. Using team profiles helps to improve the initial setup of
Zowe CLI by making service connection details easier to share and easier to store within projects.
For more information, see Using team profiles.

How can | get help with using Zowe CLI?

Ll Click to hide answer
e You can get help for any command, action, or option in Zowe CLI by issuing the command 'zowe --
help'.
e For information about the available commands in Zowe CLI, see Command Groups.

 |f you have questions, the Zowe Slack space is the place to ask our community!

How can |l use Zowe CLI to automate mainframe actions?

Ll Click to hide answer
e You can automate a sequence of Zowe CLI commands by writing bash scripts. You can then run
your scripts in an automation server such as Jenkins. For example, you might write a script that
moves your Cobol code to a mainframe test system before another script runs the automated tests.

e Zowe CLI lets you manipulate data sets, submit jobs, provision test environments, and interact with
mainframe systems and source control management, all of which can help you develop robust
continuous integration/delivery.

How can | contribute to Zowe CLI?

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/getting-started/user-guide/cli-using-understanding-core-command-groups
https://openmainframeproject.slack.com/

LI Click to hide answer
As a developer, you can extend Zowe CLI in the following ways:

e Build a plug-in for Zowe CLI
e Contribute code to the core Zowe CLI

* Fix bugs in Zowe CLI or plug-in code, submit enhancement requests via GitHub issues, and raise
your ideas with the community in Slack.

Note: For more information, see Developing for Zowe CLI.

Zowe Explorer FAQ

Why might | use Zowe Explorer versus a traditional ISPF interface to perform
mainframe tasks?

LU Click to hide answer

The Zowe Explorer VSCode extension provides developers new to the mainframe with a modern Ul,
allowing you to access and work with the data set, USS, and job functionalities in a fast and streamlined
manner. In addition, Zowe Explorer enables you to work with Zowe CLI profiles and issue TSO/MVS
commands.

How can | get started with Zowe Explorer?

LLI Click to hide answer
First of all, make sure you fulfill the following Zowe Explorer software requirements:

e Get access to z/OSMF.
 Install Node.js v8.0 or later.
e |nstall VSCode.

e Configure TSOJE address space services, z/OS data set, file REST interface, and z/OS jobs REST
interface. For more information, see z/OS Requirements.

https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#how-can-i-contribute
https://nodejs.org/en/download/
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements

Once the software requirements are fulfilled, create a Zowe Explorer profile.
Follow these steps:

1. Navigate to the explorer tree.
2. Click the + button next to the DATA SETS, USS, or JOBS bar.
3. Select the Create a New Connection to z/OS option.

4. Follow the instructions, and enter all required information to complete the profile creation.

You can also watch Getting Started with Zowe Explorer to understand how to use the basic features of
the extension.

Where can | use Zowe Explorer?

Ll Click to hide answer
You can use Zowe Explorer either in VSCode or in Theia. For more information about Zowe Explorer in
Theia, see the Theia Readme.

How do | get help with using Zowe Explorer?

LI Click to hide answer
* Use the Zowe Explorer channel in Slack to ask the Zowe Explorer community for help.

e Open a question or issue directly in the Zowe Explorer GitHub repository.

How can | use Secure Credential Storage for Zowe Explorer?

LU Click to hide answer
The Secure Credential Store Plug-in is no longer required for Zowe Explorer.

Secure credential storage functionality is now contained in the Zowe CLI core application.

https://www.youtube.com/watch?v=G_WCsFZIWt4
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/vscode-extension-for-zowe/blob/main/docs/README-Theia.md
https://openmainframeproject.slack.com/archives/CUVE37Z5F
https://github.com/zowe/vscode-extension-for-zowe/issues

What types of profiles can | create for Zowe Explorer?

Ll Click to hide answer
Zowe Explorer V2 supports using Service Profiles, Base Profiles, and Team Profiles. For more
information, see Using profiles in the Using Zowe CLI section.

How can | use FTP as my back-end service for Zowe Explorer?

Ll Click to hide answer
See the Zowe FTP extension README in GitHub for information about how to build, install, and use FTP
as your back-end service for working with UNIX files.

How can | contribute to Zowe Explorer?

LI Click to hide answer

As a developer, you may contribute to Zowe Explorer in the following ways:
e Build a Zowe Explorer extension.
e Contribute code to core Zowe Explorer.

e Fix bugs in Zowe Explorer, submit enhancement requests via GitHub issues, and raise your ideas
with the community in Slack.

Note: For more information, see Extending Zowe Explorer.

Zowe IntelliJ plug-in (incubator) FAQ

Why might | use Zowe IntelliJ plug-in versus a traditional ISPF interface to perform
mainframe tasks?

LI Click to hide answer

https://docs.zowe.org/stable/user-guide/cli-using-using-profiles
https://github.com/zowe/zowe-explorer-ftp-extension/#readme
https://github.com/zowe/vscode-extension-for-zowe/blob/main/docs/README-Extending.md

Zowe IntelliJ plug-in allows you to access and work with data sets, members and jobs directly from your
IntelliJ-based IDE.

How can | get started with Zowe IntelliJ plug-in?

LLI Click to hide answer

Install the plug-in in your IntelliJ-based IDE directly from marketplace or download it from here.

Where can | use Zowe IntelliJ plug-in?

Ll Click to hide answer
You can use it in any IntelliJ-based IDE.

How do | get help with using Zowe IntelliJ plug-in?

LI Click to hide answer
You can read detailed user guide and find any information you need here. Also, you can ask any
questions in the Zowe Slack channel #zowe-explorer-intellij.

How can | create, edit and delete z/OSMF connection?

Ll Click to hide answer

To create a connection, expand plug-in panel on an IDE sidebar (on the right side of your screen) and
press the "wrench" pictogram, or go to File -> Settings (CTRL+ALT+S), select Zowe Explorer (Zowe
IntelliJ plugin) and then switch to the zfJOSMF connection tab. Press the “+" button and fill inn all
necessary fields.

How can | contribute to Zowe IntelliJ plug-in?

https://plugins.jetbrains.com/plugin/18688-zowe-explorer
https://plugins.jetbrains.com/plugin/18688-zowe-explorer/user-guide
https://openmainframeproject.slack.com/archives/C020BGPSU0M

LU Click to hide answer

If you have something to introduce but there is no related issue in the project repo, then you can either
create the issue by yourself or contact us to help you with it. See more information in the
CONTRIBUTION.md file.

https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md

Version: v2.4.x LTS

FAQ: Zowe V2

Where can | find the V1 and V2 LTS conformance criteria?

The Zowe Squads have prepared XLS spreadsheets with conformance criteria for all Zowe extensions
including: CLI, APIs, App Framework, and Explorer for VS Code. The spreadsheets clearly show the prior / V1
criteria alongside the new [V2 criteria. Please be aware, there are additions, deletions, and CHANGES to the
criteria. In some cases the change is simply that a BEST PRACTICE has been deemed REQUIRED. Use the
included fill color key to identify new changes for V2, reworded changes, or changes from V1 removed in V2.
See the Changes to the Conformance Criteria section at Zowe.org/vNext.

Whats the difference between "server.json" and "example-
zowe.yaml"?

The previous Zowe V1.x config, "server.json", has been removed from V2 and has been replaced with a new
yaml configuration file. The app server will no longer support instances/workspaces which only contain a
"server.json" config file and will fallback to a default configuration. In addition to the app server, ZSS will no
longer support "server.json".

The yaml Zowe configuration file contains configurations for the setup, install, and initialization of Zowe as
well as for individual components. This file allows users to customize dataset names, security related
configs, certificate setup/config, job name & job prefix, various runtime configs, high availability config, as
well as individual component configurations.

For more information on Zowe setup and the yaml configuration, run the following command in the
command line:

zwe init —-help

What are the new default ports?

Four of the default Zowe ports have changed: the app server, zss, the jobs API, and the files API. The new
default app server port is 7556 (previously 8544) and the new zss port is 7557 (previously 8542). The new

https://www.zowe.org/vnext#conformance-changes

jobs API port is 7558 (previously 8545) and the new files APl is 7559 (previously 8547). The JES/USS/MVS
Explorer Ul servers have been removed and thus no longer require port configurations.

How do | access Zowe through the APl Mediation Layer in
V2?

In pervious V1.X versions of Zowe, the desktop could be accessed via the APl Medation Layer by navigating
to https://${zowe.externalDomains[@]}:{zowe.externalPort}//ui/v1l/zlux .In Zowe V2, the
route to access the desktop has changed to https://${zowe.externalDomains[0]}:
{zowe.externalPort}/zlux/ui/v1 . Such routing structure is applicable to other clients connected to
the API Gateway. For example, the API Catalog may be accessed via

https://${zowe.externalDomains [0] }:{zowe.externalPort}/apicatalog/ui/vl .

What new frameworks are supported in V2?

The Zowe app framework now supports the more modern Angular 12, Corejs 3 and Typescript 4.

Why aren't the explorers appearing on my desktop
anymore?

By default, the explorers will not longer appear on the desktop if the instance is not configured to use the API
Mediation Layer.

Version: v2.4.x LTS

Version 2.4.0 (October 2022)

Welcome to the Zowe Version 2.4.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of
issues addressed in this release.

Download v2.4.0 build: Want to try new features as soon as possible? You can download the v2.4.0 build
from Zowe.org.

New features and enhancements

Zowe Version 2.4.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

e Updated ZWEWRFO03 workflow to be up to date with the installed software.

Zowe Application Framework

ZSS
e ZSS [datasetContents now has a PUT API for creating datasets.
e ZIS dynamic linkage support

Zowe API Mediation Layer

» Validate OIDC token (#2604) (cdd4a43)

e Introduced service routing based on header to enables the Cloud Gateway to route to a southbound
service by information in the request header. (#2600) (6fafb60)

e Introduced a new cloud gateway service that provides routing functionality for multi-sysplex
environments. (#2576) (7¢c618c0)

Zowe CLI

Zowe CLI (Core)

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/issues/2604
https://github.com/zowe/api-layer/commit/cdd4a43
https://github.com/zowe/api-layer/issues/2600
https://github.com/zowe/api-layer/commit/6fafb60
https://github.com/zowe/api-layer/issues/2576
https://github.com/zowe/api-layer/commit/7c618c0

e Added the zowe files download uss-dir command to download the contents of a USS
directory. (#1038)

e Updated the zowe files upload file-to-uss and zowe files upload dir-to-uss
commands to improve how they handle file encoding. (#1479)
o Both commands now "chtag" files after uploading them to indicate their remote encoding. This
matches the already existing behavior of the zowe files download uss-file command

which checks file tags before downloading.

o The behavior of .zosattributes files which can specify local and remote encoding has been
changed. Files are now converted to remote encoding, not just tagged. If no encoding is specified,
the default transfer mode is text instead of binary to be consistent with zZ7OSMF default behavior.

z/OS FTP Plug-in for Zowe CLI

e Added a new profile property to support encoding for data sets. (#120)
* Added the ability to filter jobs based on status (e.g., Active, Held, Output, Input). (#119)

Zowe Explorer

» Added check for existing team configuration file in location during create, prompting user to continue
with the create action. (#1923)

e Added a solution to allow Zowe Explorer extensions with a dependency on Zowe Explorer to work as
web extension without Zowe Explorer functionality in vscode.dev . (#1953)

Zowe Explorer FTP Extension

» Added support for profile file encoding used for upload and download of MVS files. (#1942)

Bug fixes

Zowe Version 2.4.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

Zowe App Server

* Plugin register/deregister would not consider app2app actions and recgonizers. Now, they are added on
registration and removed on deregistration.

https://github.com/zowe/zowe-cli/issues/1038
https://github.com/zowe/zowe-cli/issues/1479
https://github.com/zowe/zowe-cli-ftp-plugin/pull/120
https://github.com/zowe/zowe-cli-ftp-plugin/pull/119
https://github.com/zowe/vscode-extension-for-zowe/issues/1923
https://github.com/zowe/vscode-extension-for-zowe/pull/1953
https://github.com/zowe/vscode-extension-for-zowe/pull/1942

Zowe API Mediation Layer

e Do not require clientAuth extension (#2595) (e9e8092)

e snakeyml update, scheme validation fix (#2577) (ae48669)
e Add build info to the manifest.yaml (#2573) (93298dd)

e Fix bug in the swagger (#2571) (36997c6)

Zowe CLI

Zowe CLI (Core)

e Updated example for the zowe profiles create zosmf-profile command. (#1152)
e Restored info message on daemon startup. (#1506)

e Updated ssh2 dependency to fix "Received unexpected packet type" error on SSH commands.
(#1516)

e Updated the minimatch and keytar dependencies for technical currency.

Zowe CLI Imperative Framework

e Updated the Config.search APIto skip loading project config layers when project directory is
false . (#883)

e Updated glob, js-yaml, diff2html,and npm-package-arg dependencies for technical

currency.

Zowe Explorer

e Fixed failed job status update for refresh job and spool file pull from mainframe. (#1936)
» Fixed project profiles loaded when no workspace folder is open. (#1802)

» Fixed serial saving of data sets and files to avoid conflict error. (#1868)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades.
Zowe does not disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45
days to decide when and how you upgrade Zowe. When a new release is published, Zowe publishes the
vulnerabilities fixed in the previous release. For more information about the Zowe security policy, see the
Security page on the Zowe website.

https://github.com/zowe/api-layer/issues/2595
https://github.com/zowe/api-layer/commit/e9e8092
https://github.com/zowe/api-layer/issues/2577
https://github.com/zowe/api-layer/commit/ae48669
https://github.com/zowe/api-layer/issues/2573
https://github.com/zowe/api-layer/commit/93298dd
https://github.com/zowe/api-layer/issues/2571
https://github.com/zowe/api-layer/commit/36997c6
https://github.com/zowe/zowe-cli/issues/1152
https://github.com/zowe/zowe-cli/issues/1506
https://github.com/zowe/zowe-cli/issues/1516
https://github.com/zowe/imperative/issues/883
https://github.com/zowe/vscode-extension-for-zowe/pull/1936
https://github.com/zowe/vscode-extension-for-zowe/issues/1802
https://github.com/zowe/vscode-extension-for-zowe/issues/1868
https://www.zowe.org/security.html

The following security issues were fixed by the Zowe security group in version 2.3.

CVE-2022-34305 (BDSA-2022-1742)
BDSA-2022-1887

BDSA-2022-1891
CVE-2016-1000027

Version: v2.4.x LTS

Version 2.3.1 (September 2022)

Welcome to the Zowe Version 2.3.1 release!
This release contains a minor packaging fix, no user action is required.
See Zowe's Version 2.3.0 release notes for the latest features, enhancements, and bug fixes.

Download v2.3.1 build: Want to try new features as soon as possible? You can download the V2.3.1 build

from Zowe.org.

https://docs.zowe.org/stable/getting-started/release-notes/v2_3_0
https://www.zowe.org/download.html

Version: v2.4.x LTS

Version 2.3.0 (September 2022)

Welcome to the Zowe Version 2.3.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of
issues addressed in this release.

Download v2.3.0 build: Want to try new features as soon as possible? You can download the V2.3.0 build
from Zowe.org.

New features and enhancements

Zowe Version 2.3.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

e Added a new dataset SZWELOAD. It contains versions of configmgr named ZWECFG31 , ZWECFG64 ,
and ZWERXCFG which can be used to invoke configmgr from within a rexx program. The expected use
case is to simplify how complex JCL gets configuration information about Zowe.

e Zowe can now start in a mode called configmgr mode. You can enable this in certain zwe
commands by adding ——configmgr . Not all commands support this yet. For now, you can use it in

zwe start, zwe stop,and zwe components . This mode is generally significantly faster to start
up Zowe, but also enforces validation of the zowe.yaml configuration against the zowe.yaml
schema files (found in /[schemas).

e Zowe can now start using multiple zowe.yaml files when using the configmgr mode. This works
for the STC startup as well asthe zwe start, zwe stop,and zwe components commands.
Each file must follow the same zowe.yaml schema as before, but in the list of files, properties found
in a file to the right will be overridden by the file to the left. Through this, you can separate portions of
Zowe configuration any way you want. To use multiple files, change your existing --config / CONFIG
input to instead be a list of FILE() entries which are colon : separated. For example, zwe start —-—
config FILE(/my/customizations.yaml):FILE(/zowe/defaults.yaml)

» Zowe server YAML files can now have templates within them when using configmgr mode. When the
value of any attribute contains ${{ }} , the content within the brackets will be replaced with whatever
the template evaluates to. The entries are processed as ECMAScript2020-compatible JavaScript
assignments. You can, for example, set one property to the value of another, such as having parmlib:

https://www.zowe.org/download.html

${{ zowe.setup.dataset.prefix }}.MYPARM rather than needing to type the prefix explicitly.

You can also use this to set conditionals. For examples, check the ZSS default yaml file.

Zowe Application Framework

Zowe App Server

e app-server can now be configured by using configmgr. This increases startup time and validation of
components and their plugins to increase automatic detection of plugin compatibility issues. This mode
can be enabled or disabled with Zowe configuration property zowe.useConfigmgr=true/false .

Zowe Common C

* Added a new build target configmgr-rexx , which builds a version of configmgr that can be used

within rexx scripts.

ZSS

e 7SS now utilizes the configuration parameters present in the zowe configuration file via the configmagr,
simplifying the startup of ZSS and increasing the validation of its parameters. The file
zss/defaults.yaml shows the default configuration parameters of zss, in combination with the
schema of the parameters within zss/schemas, though some parameters are derived from zowe-wide
parameters or from other components when they involve those other components.

e |mproved startup time due to using the configmgr to process plugin registration, and only when the
app-server is not enabled, as the app-server does the same thing.

Zowe API Mediation Layer

* Introduction of a new cloud gateway service to provide routing functionality for multi-sysplex
environments. (#2576) (7c618c0), closes #2576

¢ Introduced a new Personal Access Token (PAT) API to evict non-relevant tokens and rules (#2554)
(f3aeafa), closes #2554

* Added a Redis sentinel enabled field that allows Sentinel configuration to be added to a file and kept
available even when Sentinel is not in use. (#2546) (3779072), closes #2546

e Added customized code snippets to API Catalog. Customized snippets can now be defined as part of
the service metadata to be displayed in the API Catalog Ul (#2526) (602392¢), closes #2526

e Code snippet configuration now enables direct integration of an endpoint into an application without
requiring code to integrate the other application's REST APIs. (#2509) (4d2298e), closes #2509

https://github.com/zowe/zss/blob/013d11d700003483fde38e1df0a373bb5bd4ef8c/defaults.yaml
https://github.com/zowe/api-layer/commit/7c618c0
https://github.com/zowe/api-layer/issues/2576
https://github.com/zowe/api-layer/commit/f3aeafa
https://github.com/zowe/api-layer/issues/2554
https://github.com/zowe/api-layer/commit/3779072
https://github.com/zowe/api-layer/issues/2546
https://github.com/zowe/api-layer/commit/602392e
https://github.com/zowe/api-layer/issues/2526
https://github.com/zowe/api-layer/commit/4d2298e
https://github.com/zowe/api-layer/issues/2509

e A Personal Access Token (PAT) for SSO is now accepted. The PAT can now be validated and invalidated
using a REST API on the Gateway (#2499) (ad17c18), closes #2499

Zowe CLI

Zowe CLI (Core)

e Added the browser-view option to the zowe zos-files compare data-set command to compare

two data sets, and display the differences in the browser. (#1443)

e Added the command zowe zos-files compare local-file-data-set tocompare alocal file

and a data set, and display the differences in the browser and terminal. (#1444)

e Added the command zowe zos-files compare uss—-files tocompare two uss files, and display

the differences in the browser and terminal. (#1445)

e Added the command zowe zos-files compare local-file-uss—file tocompare alocal file

and a uss file, and display the differences in the browser and terminal. (#1446)

e Added the command zowe zos-files compare spool-dd tocompare two spool dds, and display

the differences in the browser and terminal. (#1447)

e Added the command zowe zos-files compare local-file-spool-dd tocompare alocal file

and a spool dd, and display the differences in the browser and terminal. (#1448)

e Addedthe ZOWE_CLI_PLUGINS_DIR environment variable to override the location where plug-ins are
installed. (#1483)

e Addedthe zowe zos-files compare data-set command to compare two data sets, and display
the differences in the terminal. (#1442)

Zowe CLI Imperative Framework

e Added ZOWE_CLI_PLUGINS_DIR environment variable to override the location where plug-ins are
installed. (Zowe CLI #1483)

» Added Diff utility features for getting differences between two files and open diffs in browser. Also
added web diff generator for creating web diff dir at the CLI home.

Zowe Explorer

e Added option to edit team configuration file via the + button for easy access. #1896
* Added multiple selection to manage context menu of Datasets, USS, and Jobs views. #1428

e Added Spool file attribute information to a hover over the Spool file's name. #1832

https://github.com/zowe/api-layer/commit/ad17c18
https://github.com/zowe/api-layer/issues/2499
https://github.com/zowe/zowe-cli/issues/1443
https://github.com/zowe/zowe-cli/issues/1444
https://github.com/zowe/zowe-cli/issues/1445
https://github.com/zowe/zowe-cli/issues/1446
https://github.com/zowe/zowe-cli/issues/1447
https://github.com/zowe/zowe-cli/issues/1448
https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/zowe-cli/issues/1442
https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/vscode-extension-for-zowe/issues/1896
https://github.com/zowe/vscode-extension-for-zowe/issues/1428
https://github.com/zowe/vscode-extension-for-zowe/issues/1832

e Added support for CLI home directory environment variable in Team Config file watcher, and support
watching Team Config files named zowe.config.json and zowe.config.user.json atboth
locations. #1913

e Update to Job's View Spool file label to display PROCSTEP if available, if PROCSTEP isn't available the
label will display the Spool file's record count. #1889 #1832

Extensibility API for Zowe Explorer

* New API ZoweVsCodeExtension.updateCredentials for credential prompting that updates the

ProfilesCache after obtaining credentials from user. #1852

e New APl ProfilesCache.updateProfilesArrays toupdate ProfilesCache.allProfiles
for profiles that don't store credentials locally in profile file. #1852

e New APl ProfilesCache.isCredentialsSecured to check if credentials are stored securely.
#1852

Bug fixes

Zowe Version 2.3.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

e Schema pattern for semver range has been simplified as it was not compiling in configmgr

e When zwe components install could not find or set the PC bit of a ZSS plugin, it would print out an
example command for fixing the issue. Now, it shows the exact command you could execute to fix the
PC bit problem.

Zowe Application Framework
Zowe App Server

e Schema regex pattern for semver range was not working in configmgr, and has been corrected.

Zowe Common C

e Fixed lht functionsof collections.c toavoid memory issues on negative keys

» Fixed the help message on configmgr

ZSS

https://github.com/zowe/vscode-extension-for-zowe/issues/1913
https://github.com/zowe/vscode-extension-for-zowe/issues/1889
https://github.com/zowe/vscode-extension-for-zowe/issues/1832
https://github.com/zowe/vscode-extension-for-zowe/issues/1852
https://github.com/zowe/vscode-extension-for-zowe/issues/1852
https://github.com/zowe/vscode-extension-for-zowe/issues/1852

* Fixed an 0C4 error within the /unixfile APl in 31-bit mode. This was preventing files from being shown in
the editor.

e (0C4 error messages from dataservices are now shown under the SEVERE log instead of the DEBUG log,
so that issues can be spotted more easily.

e 0C4 when Iht hashmap functions were called with negative key

Zowe API Mediation Layer

e snakeyml update, scheme validation fix (#2577) (ae48669), closes #2577

e Add build info to the manifest.yaml (#2573) (93298dd), closes #2573

e Fix bug in the swagger (#2571) (36997c6), closes #2571

e AdditionalProperties must be outside of properties attribute (#2567) (fea515a), closes #2567
e Enable hsts (#2565) (4cffe97), closes #2565

* Fix code snippets bug (#2564) (23bed56), closes #2564

e Enable redis storage mode in tests (#2522) (11bf491), closes #2522

e Gradle publish after update (#2528) (1baa6f7), closes #2528

* Remove multiple tokens from cookies (#2514) (d5bc187), closes #2514

» Retrieve swagger api docs with or without certificate configuration enabled (#2500) (16ca734), closes
#2500

Zowe CLI
Zowe CLI and related components contain the following bug fixes:

e Updated Imperative to include bug fixes in version 5.5.1.

e Renamed download data-set-matching to download data-sets—-matching . The old hame

still exists as an alias.

 Fixed output of download data-sets-matching being printed twice when some data sets fail to

download.

e Altered the zowe daemon disable command to kill only the daemon running for the current user.

Zowe CLI (Core)
Zowe CLI Imperative Framework

* Prevented base profile secure-property lookup on the global layer when there is not default base profile.
(#881)

https://github.com/zowe/api-layer/commit/ae48669
https://github.com/zowe/api-layer/issues/2577
https://github.com/zowe/api-layer/commit/93298dd
https://github.com/zowe/api-layer/issues/2573
https://github.com/zowe/api-layer/commit/36997c6
https://github.com/zowe/api-layer/issues/2571
https://github.com/zowe/api-layer/commit/fea515a
https://github.com/zowe/api-layer/issues/2567
https://github.com/zowe/api-layer/commit/4cffe97
https://github.com/zowe/api-layer/issues/2565
https://github.com/zowe/api-layer/commit/23bed56
https://github.com/zowe/api-layer/issues/2564
https://github.com/zowe/api-layer/commit/11bf491
https://github.com/zowe/api-layer/issues/2522
https://github.com/zowe/api-layer/commit/1baa6f7
https://github.com/zowe/api-layer/issues/2528
https://github.com/zowe/api-layer/commit/d5bc187
https://github.com/zowe/api-layer/issues/2514
https://github.com/zowe/api-layer/commit/16ca734
https://github.com/zowe/api-layer/issues/2500
https://github.com/zowe/imperative/issues/881

* Fixed exception when non-string passed to ImperativeExpect.toBeDefinedAndNonBlank() .
(#856)

e Removed periods in command example descriptions so descriptions look syntactically correct. (#795)
e Improved performance of Profilelnfo API to load large team config files. (Zowe Explorer #1911)

» Fixed dot-separated words incorrectly rendered as links in the web help. (#869)

* Web-diff template directory included in files section of package.json file.

e Changed the default log level of Console class from "debug" to "warn" so it is consistent with
Logger class behavior. In Zowe v2.0 the Logger class was changed to have a default log level of
"warn" but the Console class was not changed. To modify a log level, you can change it after

initializing the console like this: console.level = "info"; (Zowe CLI#511)

* Introduced examples for setting default profiles in zowe config set Examples section. (Zowe CLI
#1428)

» Fixed error when installing plug-ins that do not define profiles. (#859)

e Removed some extraneous dependencies. (#477)

Db2 Plug-in for Zowe CLI

e Updated ibm_db dependency to be compatible with Node.js 18.

Zowe Explorer

* Fixed extension being slow to load large team config files. #1911
» Fix issue with cached profile information after updates to profiles. #1915

e Fix for saving credentials to v1 profile's yaml file when un-secure and save is selected after credential
prompting. #1886

e Fix for outdated cached information after Update Credentials. #1858

e Fix to support ZOWE_CLI_HOME environment variable. #1747

» Fixed activation failure when error reading team configuration file. #1876

» Fixed Profile IO errors by refactoring use of Imperative's CliProfileManager. #1851
e Fixed runtime error found in initForZowe call used by extenders. #1872

» Added error notification for users when OS case sensitivitiy is not set up to avoid issues found with USS
files in single directory of same name but different case. #1484

e Added file watcher for team configuration files to fix v2 profile update issues experienced during
creation, updating, and deletion of global or project level configuration files in VS Code. #1760

e Updated dependencies for improved security. #1878

https://github.com/zowe/imperative/issues/856
https://github.com/zowe/imperative/issues/795
https://github.com/zowe/vscode-extension-for-zowe/issues/1911
https://github.com/zowe/imperative/issues/869
https://github.com/zowe/zowe-cli/issues/511
https://github.com/zowe/zowe-cli/issues/1428
https://github.com/zowe/imperative/issues/859
https://github.com/zowe/imperative/issues/477
https://github.com/zowe/vscode-extension-for-zowe/issues/1911
https://github.com/zowe/vscode-extension-for-zowe/issues/1915
https://github.com/zowe/vscode-extension-for-zowe/issues/1886
https://github.com/zowe/vscode-extension-for-zowe/issues/1858
https://github.com/zowe/vscode-extension-for-zowe/issues/1747
https://github.com/zowe/vscode-extension-for-zowe/issues/1876
https://github.com/zowe/vscode-extension-for-zowe/issues/1851
https://github.com/zowe/vscode-extension-for-zowe/issues/1872
https://github.com/zowe/vscode-extension-for-zowe/issues/1484
https://github.com/zowe/vscode-extension-for-zowe/issues/1760
https://github.com/zowe/vscode-extension-for-zowe/pull/1878

e Optimized saving of files on DS/USS when utilizing autosave or experiencing slow upload speeds.
#1800

e Updates to use new Zowe Explorer APIs ZoweVsCodeExtension.updateCredentials for
credential prompting and ProfilesCache.updateProfilesArrays for profiles that don't store
credentials locally in profile file. #1852

Zowe Explorer Extension for FTP

» Fixed for profile properties like "rejectUnauthorized" being ignored.

Extensibility API for Zowe Explorer

e Fix for extenders that call registerCustomProfileType() and recieved error when team
configuration file was in place. #1870

e Deprecated ZoweVsCodeExtension.promptCredentials in favor of
ZoweVsCodeExtension.updateCredentials . #1852

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades.
Zowe does not disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45
days to decide when and how you upgrade Zowe. When a new release is published, Zowe publishes the
vulnerabilities fixed in the previous release. For more information about the Zowe security policy, see the
Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.2.

* BDSA-2019-3199

https://github.com/zowe/vscode-extension-for-zowe/issues/1800
https://github.com/zowe/vscode-extension-for-zowe/issues/1852
https://github.com/zowe/vscode-extension-for-zowe/issues/1870
https://github.com/zowe/vscode-extension-for-zowe/issues/1852
https://www.zowe.org/security.html

Version: v2.4.x LTS

Version 2.2.0 (July 2022)

Welcome to the Zowe Version 2.2.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of
issues addressed in this release.

Download v2.2.0 build: Want to try new features as soon as possible? You can download the V2.2.0 build
from Zowe.org.

New features and enhancements

Zowe Version 2.2.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

e Anewcommand configmgr isnow presentin /bin/utils . It can load, validate, and report on the

Zowe configuration file.

Zowe Application Framework

* Added a script dependencies.sh which assists in managing external dependencies needed for

project compilation

e Added a new build target, configmgr , which builds a tool that can be called to either load, validate,

and print the zowe configuration, or load, validate, and run a JS script that is given the configuration.

e Added an automated build for configmgr which is consumed by the Zowe packaging

Zowe API Mediation Layer

e Revoke a Personal Access Token by admin (#2476) (e4d42a9), closes #2476

e Caching Service can store invalidated token rules (#2460) (055aac9), closes #2460
e Exchange client certificate for SAF IDT (#2455) (303087c), closes #2455 #2384

e Fix SAF IDT scheme and service (#2224) (7772401), closes #2224

e (Generate Personal Access Token (#2452) (0e39aa7), closes #2452

e Limit the scope of a Personal Access Token (#2456) (ccOaba4), closes #2456

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/e4d42a9
https://github.com/zowe/api-layer/issues/2476
https://github.com/zowe/api-layer/commit/055aac9
https://github.com/zowe/api-layer/issues/2460
https://github.com/zowe/api-layer/commit/303087c
https://github.com/zowe/api-layer/issues/2455
https://github.com/zowe/api-layer/issues/2384
https://github.com/zowe/api-layer/commit/7772401
https://github.com/zowe/api-layer/issues/2224
https://github.com/zowe/api-layer/commit/0e39aa7
https://github.com/zowe/api-layer/issues/2452
https://github.com/zowe/api-layer/commit/cc0aba4
https://github.com/zowe/api-layer/issues/2456

e Revoke a Personal Access Token (#2422) (c7f79d5), closes #2422
» Validate Serviceld with Endpoint (#2413) (9f3825f), closes #2413

Zowe CLI

Zowe CLI (Core)

e Addedthe zowe files download data-sets—-matching command to download multiple data
sets at once. (#1287)

Note: If you used this command previously in the extended files plug-in for Zowe v1, the ——fail-

fast option now defaults to true which is different from the original behavior.

e Addedthe zowe zos-files compare data-set command to compare two datasets and display
the differences on the terminal. (#1442)

Zowe Explorer

e Pull from Mainframe option added for JES spool files. #1837
e Updated Licenses. #1841

Bug fixes

Zowe Version 2.2.0 contains the bug fixes that are described in the following topics.

Zowe API Mediation Layer

¢ |Immediately expire a passticket command to generate a passticket for each call (#2496) (8adca78),
closes #2496

e Optimize image builds (#2445) (e220cbd), closes #2445

e Extend Tomcat to be able to recover after TCP/IP stack is restarted, so that the service does not require
restart. (#2421) (a851b8f), closes #2421

Zowe CLI

Zowe CLI and related components contain the following bug fixes.

Zowe CLI (Core)

https://github.com/zowe/api-layer/commit/c7f79d5
https://github.com/zowe/api-layer/issues/2422
https://github.com/zowe/api-layer/commit/9f3825f
https://github.com/zowe/api-layer/issues/2413
https://github.com/zowe/zowe-cli/issues/1287
https://github.com/zowe/zowe-cli/issues/1442
https://github.com/zowe/vscode-extension-for-zowe/pull/1837
https://github.com/zowe/vscode-extension-for-zowe/issues/1841
https://github.com/zowe/api-layer/commit/8adca78
https://github.com/zowe/api-layer/issues/2496
https://github.com/zowe/api-layer/commit/e220cbd
https://github.com/zowe/api-layer/issues/2445
https://github.com/zowe/api-layer/commit/a851b8f
https://github.com/zowe/api-layer/issues/2421

e Updated Imperative to address ProfileInfo related issues.

e Fixed the Zowe Daemon binary exiting with an error if the daemon server does not start within 3
seconds.

* Alter the zowe daemon disable command to only kill the daemon running for the current user.

Zowe CLI Imperative Framework

e Expose the isSecured functionality from the ProfilesCredentials. (#549)

* Allow the ConfigAutoStore to store plain-text properties that are defined as secure in the schema (for
example, user, password). (zowe/vscode-extension-for-zowe: #1804)

e Added ANSI escape codes trimming for the Web Help. (#704)

e Fixed AbstractRestClient not converting LF line endings to CRLF for every line when downloading

large files on Windows. (zowe/zowe-cli/#1458)
e Fixed zowe —-version —-rfj including a trailing newline in the version field. (#¥842)

e Fixed ——response-format—json option not supported by some commands in daemon mode.
(#843)

e Removed some extraneous dependencies. (#477)

z/OS FTP Plug-in for Zowe CLI

e Pickup zos—node-accessor v1.0.11 to fix listing single USS file or symbol link and update PDS
dataset allocation.

e Refine help of partitioned dataset allocation.

Zowe Explorer

e Updated imports to use the imperative instance provided by the CLI package. #1842

* Fixed unwanted requests made by tree node when closing folder. #754

 Fix for credentials not being updated after the invalid credentials error is displayed. #1799
* Fixed hyperlink for Job submitted when profile is not already in JOBS view. #1751

* Fixed key bindings for Refresh Zowe Explorer to not override default VSC key binding. See
README.md for new key bindings. #1826

* Fixed Update Profile issue for missing nonsecure credentials. #1804
» Fixed errors when operation cancelled during credential prompt. #1827
e Login and Logout operations no longer require a restart of Zowe Explorer or VSC. #1750

e Fix for Login token always being stored in plain text. #1840

https://github.com/zowe/imperative/issues/549
https://github.com/zowe/vscode-extension-for-zowe/issues/1804
https://github.com/zowe/imperative/issues/704
https://github.com/zowe/zowe-cli/issues/1458
https://github.com/zowe/imperative/issues/842
https://github.com/zowe/imperative/issues/843
https://github.com/zowe/imperative/issues/477
https://github.com/zowe/vscode-extension-for-zowe/issues/1842
https://github.com/zowe/vscode-extension-for-zowe/issues/754
https://github.com/zowe/vscode-extension-for-zowe/issues/1799
https://github.com/zowe/vscode-extension-for-zowe/issues/1751
https://github.com/zowe/vscode-extension-for-zowe/blob/master/packages/zowe-explorer/README.md#keyboard-shortcuts
https://github.com/zowe/vscode-extension-for-zowe/issues/1826
https://github.com/zowe/vscode-extension-for-zowe/issues/1804
https://github.com/zowe/vscode-extension-for-zowe/issues/1827
https://github.com/zowe/vscode-extension-for-zowe/issues/1750
https://github.com/zowe/vscode-extension-for-zowe/issues/1840

¢ Fixed Theia tests. #1665

https://github.com/zowe/vscode-extension-for-zowe/issues/1665

Version: v2.4.x LTS

Version 2.1.0 (June 2022)

Welcome to the Version 2.1.0 release of Zowe!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of
issues addressed in this release.

Download v2.1.0 build: Want to try new features as soon as possible? You can download the V2.1.0 build
from Zowe.org.

New features and enhancements

Zowe API Mediation Layer

e Added trivial schema files for lib components. Updated manifests to remove build metadata (#2379)
(6ebab8f), closes #2379

e Extended API operation filter in the Swagger Ul (#2397) (cffd6cf), closes #2397

e Generate basic code snippets (#2387) (79c67d0), closes #2387

e New endpoint to retrieve default API doc for service (#2327) (502ba3c), closes #2327

e Enhanced Discovery service health check (#2312) (2f167ff), closes #2312

e Support for TLS v1.3 (#2314) (€96135a), closes #2314 #2269

e Enhanced x509 authentication scheme to support client certificates (#2285) (a053b00), closes #2285

e Enhanced zowejwt authentication scheme to support client certificates (#2292) (c602080), closes
#2292

e Enhanced z/OSMF authentication scheme to support client certificates (#2207) (5750072), closes
#2207

e Added support to change password via z/OSMF (#2095) (51e8bd3), closes #2095

e Enabled Discovery Service and Gateway Service native library extensions (#1987) (fd03db5), closes
#1987

* Added methods for ZaaS client to support password change (#1991) (7597bd7), closes #1991
e API ML sample extension (#1947) (a085cf3), closes #1947

Zowe Application Framework

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/6eba58f
https://github.com/zowe/api-layer/issues/2379
https://github.com/zowe/api-layer/commit/cffd6cf
https://github.com/zowe/api-layer/issues/2397
https://github.com/zowe/api-layer/commit/79c67d0
https://github.com/zowe/api-layer/issues/2387
https://github.com/zowe/api-layer/commit/502ba3c
https://github.com/zowe/api-layer/issues/2327
https://github.com/zowe/api-layer/commit/2f167ff
https://github.com/zowe/api-layer/issues/2312
https://github.com/zowe/api-layer/commit/e96135a
https://github.com/zowe/api-layer/issues/2314
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/a053b00
https://github.com/zowe/api-layer/issues/2285
https://github.com/zowe/api-layer/commit/c602080
https://github.com/zowe/api-layer/issues/2292
https://github.com/zowe/api-layer/commit/5750072
https://github.com/zowe/api-layer/issues/2207
https://github.com/zowe/api-layer/commit/51e8bd3
https://github.com/zowe/api-layer/issues/2095
https://github.com/zowe/api-layer/commit/fd03db5
https://github.com/zowe/api-layer/issues/1987
https://github.com/zowe/api-layer/commit/7597bd7
https://github.com/zowe/api-layer/issues/1991
https://github.com/zowe/api-layer/commit/a085cf3
https://github.com/zowe/api-layer/issues/1947

USS Explorer contains the following enhancement.
» Added the feature to download a file.
MVS Explorer contains the following enhancement.

» Disabled the submit button and gave a warning message in Dialogs when dataset or dataset member
name is invalid.

JES Explorer contains the following enhancements.

e Highlighted the selected Jobs and Job Files.
e Updated the Job tree when a job is deleted or cancelled.
e Added x support for job ID.

» Added app2app arguments: expand - Boolean that says to expand the job. In a list of jobs, this
expands the first result. showDD - string that auto-opens any dataset definition with this name when

expanding the job.

Zowe CLI

Zowe CLI contains the following enhancements and changes.

Zowe CLI (Core)

e Updatedthe zowe config auto-init command to allow using certificates for authentication.
(#1359)

* Exposed profile type configuration from the respective SDKs.

e Addedthe zowe zos-jobs view all-spool-content command to view all spool content given a
job ID. (#946)
e Addedthe zowe jobs submit uss—-file command to submit a job from a USS file. (#1286)

e Addedthe zowe files view data-set andthe zowe files view uss—-file commands to
view a data set or a USS file. (#1283)

e Addedthe zowe jobs delete old-jobs command to delete (purge) jobs in OUTPUT status.
(#1285)

Zowe CLI Imperative Framework

https://github.com/zowe/zowe-cli/issues/1359
https://github.com/zowe/zowe-cli/issues/946
https://github.com/zowe/zowe-cli/issues/1286
https://github.com/zowe/zowe-cli/issues/1283
https://github.com/zowe/zowe-cli/issues/1285

e Added the ability for CLIs and Plug-ins to override some of the prompting logic if an alternate property
is set.

e Introduced the ——show-inputs-only flagto show the inputs of the command that would be used if

a command were executed.

¢ Added the dark theme mode to web help that is automatically used when system-wide dark mode is
enabled.

e Added environmental variable support to the ProfileInfo APIs by defaulting homeDir to cliHome .
(#1777)

Bug fixes

Zowe API Mediation Layer

e Add log masking class for sensitive logs (#2003) (994b483), closes #2003

e API Catalog swagger link (#2344) (beO7fda), closes #2344

e Use same key and record lengths as jc| (#2341) (d8644f2), closes #2341

* Add server-side logging for swagger handling code (#2328) (7b0455d), closes #2328
* Preserve request cookies (#2293) (71c6649), closes #2293 #2269

e ZaaS client compatibility with Zowe v2 (#2227) (abdf995), closes #2227

e Add BearerContent filter to enable bearer auth (#2197) (1d41704), closes #2197

e Configure southbound timeout with APIML_GATEWAY_TIMEOUT_MILLIS (#2154) (6af5d6f), closes
#2154

e Improve error handling for API diff endpoint (#2178) (1581e39), closes #2178

e Update data model for infinispan storage in Caching service (#2156) (38a1348), closes #2156
* Versioning in image publishing workflow (#2159) (db52527), closes #2159

e Add x509 auth info to gw api doc (#2142) (0205470), closes #2142

* Properly remove services when instances are removed from Discovery Service (#2128) (c675b91),
closes #2128

* Use ribbon LB for Web sockets (#2147) (4751dbc), closes #2147
e Add missing fields in error response (#2118) (3b9745c), closes #2118
e Do not require keyAlias for SSL configuration (#2110) (03bee79), closes #2110

Zowe CLI

https://github.com/zowe/vscode-extension-for-zowe/issues/1777
https://github.com/zowe/api-layer/commit/994b483
https://github.com/zowe/api-layer/issues/2003
https://github.com/zowe/api-layer/commit/be07fda
https://github.com/zowe/api-layer/issues/2344
https://github.com/zowe/api-layer/commit/d8644f2
https://github.com/zowe/api-layer/issues/2341
https://github.com/zowe/api-layer/commit/7b0455d
https://github.com/zowe/api-layer/issues/2328
https://github.com/zowe/api-layer/commit/71c6649
https://github.com/zowe/api-layer/issues/2293
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/abdf995
https://github.com/zowe/api-layer/issues/2227
https://github.com/zowe/api-layer/commit/1d41704
https://github.com/zowe/api-layer/issues/2197
https://github.com/zowe/api-layer/commit/6af5d6f
https://github.com/zowe/api-layer/issues/2154
https://github.com/zowe/api-layer/commit/1581e39
https://github.com/zowe/api-layer/issues/2178
https://github.com/zowe/api-layer/commit/38a1348
https://github.com/zowe/api-layer/issues/2156
https://github.com/zowe/api-layer/commit/db52527
https://github.com/zowe/api-layer/issues/2159
https://github.com/zowe/api-layer/commit/0205470
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/c675b91
https://github.com/zowe/api-layer/issues/2128
https://github.com/zowe/api-layer/commit/4751dbc
https://github.com/zowe/api-layer/issues/2147
https://github.com/zowe/api-layer/commit/3b9745c
https://github.com/zowe/api-layer/issues/2118
https://github.com/zowe/api-layer/commit/03bee79
https://github.com/zowe/api-layer/issues/2110

Zowe CLI (Core)

Zowe CLI (Core) contains the following bug fixes:

e Fixed anissue where config auto-init could report that it modified a config file that did not yet

exist.

* Updated Imperative to fix the config import and config secure commands that were not

respecting the ——reject-unauthorized option.
* Fixed an issue where privateKey is not being respected. (#1398 and #1392)

* Movedthe authConfig object from the core SDK into the CLI's base profile definition to fix invalid

handler path.
¢ Fixed an issue where SSH command waits forever when user has expired password. (#989)
e Fixed the name of the positional in zowe zos-jobs submit uss-file command.
e Updated the description of the zowe zos—jobs view all-spool-content command.

e Updated the descriptions of the zowe zos-files view uss—-file and zowe zos-files view

data-set commands.
* Removedthe zowe zos-files view uss-file <file> —-record option.
* Fixed the description of the zowe zos-jobs delete command group.

e Addedthe ——modify-version optiontothe zowe zos-jobs delete old-jobs command for

feature parity with zowe zos—jobs delete job .

e Updated Imperative to address ProfileInfo related issues.
Zowe CLI Imperative Framework
Zowe CLI Imperative Framework contains the following bug fixes:

» Fixed ProfileInfo API argTeamConfiglLoc not recognizing secure fields in multi-layer operations.
(#800)

» Fixed ProfileInfo APl updateKnownProperty possibly storing information in the wrong location due

to optional osLoc information. (#800)
e Fixed osLoc information returning project level paths instead of the global layer. (#805)
e Fixed autoStore notbeing checked by updateKnownProperty . (#806)

e Fixedthe plugins uninstall command failing when there is a space in the install path.

https://github.com/zowe/zowe-cli/issues/1398
https://github.com/zowe/zowe-cli/issues/1392
https://github.com/zowe/zowe-cli/issues/989
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/issues/805
https://github.com/zowe/imperative/issues/806

* Fixed anissue where config auto-init might fail to create project config when global config
already exists. (#810)

* Fixed config secure notrespectingthe rejectUnauthorized property in team config. (#813)
e Fixed config import notrespectingthe rejectUnauthorized property in team config. (#816)
e Updated the cli-table3 dependency for performance improvements.

e Fixed config init not replacing empty values with prompted for values in team config. (#821)

* Fixed config init saving empty string values to config file when prompt was skipped.

e Fixed ConfiglLayers.read skipping load of secure property values.

e Improved the performance of ConfiglLayers.activate by skipping config reload if the active layer

directory has not changed.

* Removed the async keyword fromthe ConfiglLayers.read method and the

ConfiglLayers.write method because they do not contain asynchronous code.

e Fixed ProfileInfo.readProfilesFromDisk failing when team config files and old-school profile

directory do not exist.

* Fixed ProfileInfo.updateProperty notupdating properties that are newly present after

reloading team config.

Note: If you are developing an SDK that uses the ProfileInfo API, use the method
ProfileInfo.getTeamConfig instead of ImperativeConfig.instance.config which may

contain outdated config or be undefined.

 Fixed ProfileInfo API not detecting secure credential manager after profiles have been reloaded.

Zowe Application Framework

USS Explorer contains the following fix.
e Fixed the bug where opening a file fails when USS path has / at the end.

JES Explorer contains the following fixes.

https://github.com/zowe/imperative/issues/810
https://github.com/zowe/imperative/issues/813
https://github.com/zowe/imperative/issues/816
https://github.com/zowe/imperative/issues/821

* Fixed bug where URL requests fail when using # character in prefix.

* Fixed a bug where using app2app params at launch would not use desired data.

Zowe Explorer

* Fixed Quick-key Delete in USS and Jobs trees. #1821

* Fixed issue with Zowe Explorer crashing during initialization due to Zowe config file errors. #1822
¢ Fixed issue where Spool files failed to open when credentials were not stored in a profile. #1823
* Fixed extra space in the Invalid Credentials dialog, at profile validation profilename. #1824

* Updated dependencies for improved security. #1819

* Fixed USS search filter fails on credential-less profiles. #1811

» Fixed Zowe Explorer recognizing environment variable ZOWE_CLI_HOME. #1803

* Fixed Zowe Explorer prompting for TSO Account number when saved in config file's TSO profile. #1801
e Improved logging information to help diagnose Team Profile issues. #1776

* Fixed adding profiles to the tree view on Theia. #1774

* Updated Log4js version to resolve initialization problem on Eclipse Che. #1692

e Fixed dataset upload issue by trimming labels. #1789

e Fixed duplicate jobs appearing in the jobs view upon making an owner/prefix filter search for extenders.
#1780

» Fixed error displayed when opening a job file for extenders. #1701

https://github.com/zowe/vscode-extension-for-zowe/pull/1821
https://github.com/zowe/vscode-extension-for-zowe/pull/1822
https://github.com/zowe/vscode-extension-for-zowe/pull/1823
https://github.com/zowe/vscode-extension-for-zowe/pull/1824
https://github.com/zowe/vscode-extension-for-zowe/pull/1819
https://github.com/zowe/vscode-extension-for-zowe/pull/1811
https://github.com/zowe/vscode-extension-for-zowe/pull/1803
https://github.com/zowe/vscode-extension-for-zowe/pull/1801
https://github.com/zowe/vscode-extension-for-zowe/pull/1776
https://github.com/zowe/vscode-extension-for-zowe/issues/1774
https://github.com/zowe/vscode-extension-for-zowe/issues/1692
https://github.com/zowe/vscode-extension-for-zowe/issues/1789
https://github.com/zowe/vscode-extension-for-zowe/pull/1780
https://github.com/zowe/vscode-extension-for-zowe/pull/1701

Version: v2.4.x LTS

Version 2.0.0 (April 2022)

Welcome to the Version 2.0.0 release of Zowe!
Version 2.0 introduced breaking changes and a number of new features.

 If you are upgrading from V1to V2, review the Breaking changes first.
e See New features and enhancements for a full list of changes to the functionality.
e See Bug fixes for a list of V1 issues addressed in this release.

e See Conformance and release compatibility for V2 Conformance Criteria updates and compatibility with

V1.

Download v2.0.0 build: Want to try new features as soon as possible? You can download the V2.0.0 build
from Zowe.org.

v2 office hours videos: Zowe held a series of v2 LTS office hours for extenders and consumers to introduce
all the V2 changes. Watch the videos to learn more about the new features.

Breaking changes

Zowe installation

e You must pass —ppx when you unpax the Zowe convenience build to preserve extended file

attributes.

 All utility scripts, like zowe-install.sh, zowe-install-xmem.sh , zowe-install-proc.sh,
validate-directory-is—accessible.sh , are removed and migrated to the new zwe server

command format.
* If you rely on some of the scripts, find the alternative new zwe command or shell library functions.
e ZWESVSTC isremoved and ZWESLSTC will replace it to start Zowe.
e instance.env isdeprecated and replaced by zowe.yml .
e InV2, youuse the P command to terminate Zowe instead of the C cancel command.

e Zowe now allows fine-grained customization of log, workspace, and configuration directories. By
default, these directories remain grouped under an instance directory (same as Zowe v1).

https://www.zowe.org/download.html
https://docs.zowe.org/stable/getting-started/zowe-office-hours

e Environment variables are reorganized to better describe itself. All zowe.yam1l configuration entries
will be automatically converted to environment variables for easy consumption. Check with the
community what the new alternative variable names are.

» During Zowe configuration, redundant ip fields will be removed or consolidated in favor of

hostname or domains .

e Component or extension manifest is mandatory. You must use the zwe components install

command to install the extension.

API Mediation Layer

e Removed the support for the old path pattern (#1770). This includes the changes to the endpoints used
in ZAAS client. If your application uses ZAAS client, please verify whether the configuration properties
use the new path pattern (/gateway/api/vl instead of /api/v1l/gateway).

e Removed the support for different authentication schemas for different instances of service (#1051).

Zowe Application Framework

Some configuration, such as port and IP values, are different by default in V2 but can be reconfigured to old

values. However, some application framework extensions may not work in V2 without enhancements.
e zLUX App Manager

Due to new library versions, native apps such as Angular and React apps written for Zowe v1 may not
work in Zowe v2. Rebuilding the apps with the same versions and the latest webpack build scripts is

recommended.
e 7|l UX Server Framework

o The list of properties sent back from the /server/environment has changed to reflect the different
environment values present in Zowe v2

o Adjusted the server to respect ZSS's new cookie format in which the port or HA instance ID is a
suffix of the ZSS cookie. This means that the server may not work properly when paired with a v1
ZSS and works best with v2 ZSS.

e zLUX Editor

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1
desktop.

https://github.com/zowe/api-layer/issues/1770
https://github.com/zowe/api-layer/issues/1051

e Basic VT Terminal Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may
no longer work in the Zowe v1 Desktop, and v2 should be used instead.

e Basic TN3270 Display Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may
no longer work in the Zowe v1 Desktop, and v2 should be used instead.

e Sample angular app

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1

desktop.

Zowe CLI

* Breaking changes for Zowe CLI end users:

o zowe config no longer manages app settings (Imperative and CLI)
o fail-on-error default changed to true for zowe plugins validate (Imperative and CLI)

o Default Imperative and CLI log level changed from DEBUG to WARN (Imperative and CLI), which
potentially changes troubleshooting steps for providing information to support.

e Breaking changes that could prevent a V1 plug-in or SDK from working in V2

o CLI package should be removed as a plug-in peer dep (Imperative)

o AbstractRestClient.mDecode defaults to true so any plug-in with custom RestClient
implementation that adds gzip decompression may break

o The return value for PluginManagementFacility.requirePluginModuleCallback
changed. Application and plug-in developers requiring a module from a plug-in's relative path
usingthe requirePluginModuleCallback function no longer need to provide the plug-in
name in a separate variable this.pluginNmForUseInCallback = pluginName before
binding the class this.requirePluginModuleCallback.bind(this) .Instead they can call

this.requirePluginModuleCallback(pluginName) .

= Previously in V1:

" |[nV2:

e Breaking changes for Zowe CLI and Imperative plug-in developers

These changes only impact early adopters of @next as these are breaking changes made during the
technical preview validation phase. Thanks to the community for the feedback.

o tokenType and tokenValue were combinedinto authToken , which later was reverted
(Imperative and CLI)

o Optionsin zowe config group are renamed: —-user isrenamedto --user-config ,h and -
—-global to ——global-config.

o Zowe.schema.json formatchanged afew times (version 2, version 3):
ConfigSchemas. loadProfileSchemas ischangedto ConfigSchemas.loadSchema

o Config.set nolonger coerces string values to other types unless parseString = true

which might impact the SDK instead of CLI plug-ins.

New features and enhancements

Zowe installation

e Introduced a new server command zwe to balance between simplification and flexibility on installation
and configuration.
o Almost all Zowe utility scripts in V1 are consolidated into new zwe server command. This new
command defines consistent help messages, logging options, and so on. See the ZWE Command
Reference for more information.

o Provides shell function library to help extensions to achieve common tasks. For example, execute
TSO command, operator command, submit job and check job completion, and so on.

o Keep away from commands/functions marked as experimental and internal.

* Installation / Configuration changes
o During installation, no new runtime directory will be created.

o A zowe.yaml file can be used to centralize all configuration options. This configuration is
compatible with all Zowe use cases (including high availability and containerization).

o For almost all Zowe configuration steps, an automation option zwe init command is provided.

You can still choose to run all steps one by one.

o Providesthe ——security-dry-run mode that allows you to generate security commands and

pass along to your system admin.

o You can run all steps from USS now.

https://docs.zowe.org/stable/getting-started/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean

e A Zowe component or extension can use manifest.yaml to define how it interacts with Zowe and
other components.
o The component or extension must definea manifest.yaml or manifest.json fileto

describe itself. The manifest allows you to define how to register on Zowe API ML Discovery, how to
register under Zowe Desktop, and whether it's Java extension library for APl ML, and so on.

o Components can define their own configs in manifest.yaml which shows you how to
customize this component and provides default values if they are not defined. This option is
compatible with Zowe running in high availability mode.

¢ Introduced new data sets to better organize the contents.
o Added SZWEEXEC to contain few utility tools.

o You can customize your own PARMLIB, APF Authorized LOADLIB and APF-authorized ZIS plug-ins
library. CUST.JCLIB is a data set where Zowe will store temporary JCLs.

Zowe API Mediation Layer

e There is now the option to change your password via the Catalog Ul (#2035) (139a231), closes #2035

* Discovery service can be configured to modify the service ID at registration time (#2229) (63f6fde),
closes #2229

e There is now the option to specify base packages for the extensions loader(#2081) (9a4beba), closes
#2081

e There is a new design of the logout panel in the Catalog dashboard (#2102) (1382f24), closes #2102
e Add missing tooltips to all onboarding options (#2194) (5446fd5), closes #2194

e Migrate API Catalog to the Material Ul library (2c595d5, 0da7f15, 95da488, c60371d, 537fa34,
81ab2ed), closes #1169

e Made various improvements to the onboarding wizard (#1772) (20dd70b), closes #1772

Zowe Application Framework

e zLUX App Manager

o New desktop library versions are Angular 6->12, Corejs 2->3, Typescript 2->4, and so on. For more
information, visit https://www.zowe.org/vnext.

o The web-browser and admin-desktop-notification apps now contains a manifest file so that it can
be installed with zwe components install.

e zLUX App Server

https://github.com/zowe/api-layer/commit/139a231
https://github.com/zowe/api-layer/issues/2035
https://github.com/zowe/api-layer/commit/63f6fde
https://github.com/zowe/api-layer/issues/2229
https://github.com/zowe/api-layer/commit/9a4be5a
https://github.com/zowe/api-layer/issues/2081
https://github.com/zowe/api-layer/commit/1382f24
https://github.com/zowe/api-layer/issues/2102
https://github.com/zowe/api-layer/commit/5446fd5
https://github.com/zowe/api-layer/issues/2194
https://github.com/zowe/api-layer/commit/2c595d5
https://github.com/zowe/api-layer/commit/0da7f15
https://github.com/zowe/api-layer/commit/95da488
https://github.com/zowe/api-layer/commit/c60371d
https://github.com/zowe/api-layer/commit/537fa34
https://github.com/zowe/api-layer/commit/81ab2ed
https://github.com/zowe/api-layer/issues/1169
https://github.com/zowe/api-layer/commit/20dd70b
https://github.com/zowe/api-layer/issues/1772
https://www.zowe.org/vnext

o Renamed ZLUX_ environment variables to ZWED_ for consistency. Backwards compatible with

old environment variables.

o Added support for new logDirectory variable specificationin zowe.yaml

o Added support for reading from zowe.yaml instead of server.json

e 7zLUX Server Framework

o Added support for reading zowe.yaml directly, as opposed to server.json .

o The server can now support checks on the existence and version of APIML if a plug-in states a
dependency on APIML in the "requirements.components" section of its plug-in definition.

o The list of parameters for server configuration is now documented in json-schema for validation,
you can find this in the zlux repository

ZSS Package

New configuration option that allows to run 64-bit ZSS

zLUX Editor

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Basic VT Terminal Emulator

The app now contains a manifest file so that it can be installed with zwe components install

Sample angular app

The app now contains a manifest file so that it can be installed with zwe components install

USS Explorer

USS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe
environment, this will result in less processes but does break links about getting to the explorer via
APIML routes. The explorer is now available via the app-server's APIML route.

JES Explorer

JES-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe
environment, this will result in less processes but does break links about getting to the explorer via
APIML routes. The explorer is now available via the app-server's APIML route.

e MVS Explorer

MVS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe
environment, this will result in less processes but does break links about getting to the explorer via
APIML routes. The explorer is now available via the app-server's APIML route.

Zowe CLI

Zowe CLI contains the following enhancements and changes:
* Team Configuration:

Team configuration significantly improves the configuration/onboarding experience and provides the
ability to easily share configuration information with others in an organization.

e Automatic Team Configuration:

Automatic team configuration leverages the Zowe API Mediation Layer to automatically configure
connections for conformant API ML services that also have a CLI plug-in.

¢ Daemon Mode:

Daemon Mode significantly improves the performance of Zowe CLI by not requiring separate node
processes to be spawned for every command.

e Secure by Default:

Secure by default provides a secure out-of-the-box experience by including the secure credential store
feature, previously offered as a plug-in in V1, as part of the core Zowe CLI package.

» Migrating to Zowe V2 Team Configuration:

After installing @zowe/cli@zowe-v2-1ts and all desired plug-ins @zowe-v2-1ts , you can easily

migrate to Zowe V2 team configuration by issuing the following command:
Note: For more information, see Using Profiles.

Zowe CLI Plug-ins

Zowe maintained CLI plug-ins are Zowe V2 LTS conformant. As such, they integrate with Team
configuration, daemon mode, and the team configuration migration utility. For information about

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/getting-started/user-guide/cli-using-using-profiles#important-information-about-team-profiles

enhancements and bug fixes, see the changelogs for the following plug-ins:

e |BM CICS Plug-in for Zowe CLI

e |IBM Db2 Database Plug-in for Zowe CLI
e |BM z/OS FTP Plug-in for Zowe CLI

e IBM IMS Plug-in for Zowe CLI

e |IBM MQ Plug-in for Zowe CLI

Imperative CLI Framework

Imperative is the infrastructure on which various Zowe technologies are built. For information about
enhancements and bug fixes, see the Imperative CLI Framework changelog.

Nodejs SDK

The Nodejs SDK packages were updated to make use of key Zowe V2 features, including Team
Configuration. For information about enhancements and bug fixes, see the changelogs for the following
packages:

e Core Package

* Provisioning Package

e 7/OS Console Package

e 7/OS Files Package

e 7/OS Jobs Package

e 7/OS Logs Package

e 7/OS Management Facility Package
e 7/OS TSO Package

e 7/OS USS Package

e 7/OS Workflows Package

Zowe Explorer

Zowe Explorer makes use of Team Configuration and is secure by default. For information about
enhancements and bug fixes, see the following changelogs:

e Zowe Explorer

e Zowe Explorer CICS Extension

https://github.com/zowe/zowe-cli-cics-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-db2-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ftp-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ims-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-mq-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/imperative/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/core/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/provisioning/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosconsole/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosfiles/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosjobs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zoslogs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosmf/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zostso/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosuss/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/workflows/CHANGELOG.md
https://github.com/zowe/vscode-extension-for-zowe/blob/next/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/vscode-extension-for-cics/blob/next/CHANGELOG.md

e Zowe Explorer FTP Extension

Bug fixes

Zowe API Mediation Layer

e Caching service logging (#2222) (5ff64d9), closes #2222

e Add x509 Authentication information to the APl Documentation of the API Gateway (#2142) (072ad23),
closes #2142

e Authorization provider set empty as default (#2107) (aa77926), closes #2107

e Update URL of the API Catalog to work with the V2 version of the Zowe Desktop (6f4257a), closes
#2022

Zowe Application Framework
e zLUX Server Framework

When paired with the Zowe server infrastructure, the app-server will now automatically register and de-
register plug-ins at startup depending on each plug-in's component enabled status.

e 7SS Package

o Do not use "tee" when log destination is /dev/null

o Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Conformance and release compatibility

Backward compatibility

Zowe V1 conformant extensions/plug-ins are not guaranteed to be compatible with Zowe v2 and therefore
may not be operable. In general, plug-ins/extensions which leverage v2 APIs that have known breaking
changes are at high risk of incompatibility and unpredictable results.

Recommendation: All v1 extenders test with Zowe v2, identify any issues, and disclose results to
consumers to clearly indicate backward compatibility status in the extension documentation. If unable to

test, clearly document as such.

https://github.com/zowe/vscode-extension-for-zowe/blob/next/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/api-layer/commit/5ff64d9
https://github.com/zowe/api-layer/issues/2222
https://github.com/zowe/api-layer/commit/072ad23
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/aa77926
https://github.com/zowe/api-layer/issues/2107
https://github.com/zowe/api-layer/commit/6f4257a
https://github.com/zowe/api-layer/issues/2022

Forward compatibility

Zowe Vv2 conformant (planning to earn conformance) extensions/plug-ins are not guaranteed to be
compatible with Zowe v1 LTS. In general, plug-ins/extensions with no known dependency on any newly
introduced Zowe v2 functions are at minimum risk.

Recommendation: All v2 extenders test with Zowe v1 LTS, identify any issues, and disclose results to
consumers to clearly indicate forward compatibility status in the extension documentation. If unable to test,
clearly document as such.

Conformance compatibility

Zowe V1 conformant extensions/plug-ins are likely to require changes to meet Zowe v2 conformance criteria.
All extensions (regardless of v1 conformance status) must apply for v2 conformance and satisfy all required
v2 testing criteria. You can find the V2 Conformance Criteria here.

Recommendation: All extenders interested in earning v2 conformance review the v2 conformance criteria,
determine if technical changes are necessary, make appropriate modifications and prepare to apply for v2
conformance.

Need help? For assistance with reviewing or completing the Zowe Conformance Zowe v2 application, reach
out to members of the Zowe Onboarding Squad on Slack at https://slack.openmainframeproject.org in the

#zowe—-onboarding channel.

https://github.com/openmainframeproject/foundation/files/8489757/Zowe.Conformance.Program.-.Test.Evaluation.Guide.Table.pdf
https://slack.openmainframeproject.org/

Version: v2.4.x LTS

Zowe V2 office hours videos

Watch the series of Zowe office hours videos to learn more about the new features and enhancements in

Zowe Version 2 release.

Office hours for Zowe extenders

The following videos walk you through Zowe V2 updates from an extender's perspective. You can start with
general information and dive deeper in other sections for more details.

General information

General information Updates for extenders Wrap-up session

Zowe component updates

o Zowe Application
Zowe CLI Zowe API Mediation Layer Zc
Framework

Installation and V2 conformance

SSO and APIML SSO Conformance Systems and instal

Office hours for Zowe consumers

The following office hours walk you through Zowe V2 updates from a consumer's perspective. Watch these
videos to learn more about the enhancements that are introduced to each core component.

Zowe component updates

Zowe Application

Zowe CLI Zowe API Mediation Layer Zc
Framework

Version: v2.4.x LTS

Zowe CLI quick start

Get started with Zowe™ CLI quickly and easily.

This article presumes that your role is that of a systems administrator or you possess prerequisite
knowledge of command-line tools and writing scripts. If you prefer more detailed instructions, see Installing
Zowe CLI.

Installing

The following topics describe the Zowe CLI system requirements and the various methods to use to install
Zowe CLI.

Software Requirements

Before you install Zowe CLI, download and install Node.js and npm. Use an LTS version of Node.js that is
compatible with your version of npm. For a list of compatible versions, see Node.js Previous Releases.

(Linux only): On graphical Linux, install gnome-keyring and libsecret on your computer before you
install the Secure Credential Store. On headless Linux, follow the procedure documented in the SCS plug-in
Readme.

Installing Zowe CLI core from public npm

Issue the following command to install the core CLI.

Installing CLI plug-ins

The command installs most open-source plug-ins, but the IBM Db2 plug-in requires additional configuration
to install.

For more information, see Installing plug-ins.

Issuing your first commands

https://docs.zowe.org/stable/user-guide/cli-installcli
https://nodejs.org/en/download/releases/
https://github.com/zowe/zowe-cli-scs-plugin/blob/master/README.md#software-requirements
https://docs.zowe.org/stable/user-guide/cli-db2plugin#installing
https://docs.zowe.org/stable/user-guide/cli-installplugins

Issue zowe ——help to display full command help. Append —-help (alias —h) to any command to see

available command actions and options.

Optionally, you can view the Zowe CLI web help in a browser window. For more information, see Displaying
help.

All Zowe CLI commands start with zowe followed by the name of the core command group. For example,
zowe plugins -h . Tointeract with the mainframe, type zowe followed by a command group, action,

and object. Use options to specify your connection details such as password and system name.

Listing all data sets under a high-level qualifier (HLQ)

Example:

Downloading a partitioned data-set (PDS) member to local file
Example:

See Understanding core command groups for a list of available functionality.

Team profiles

Zowe CLI V2-LTS now supports team profiles. The process of setting up team profiles is simple and can be
rolled out easily accross your organization. We highly recommend that you configure team profiles to
support your Zowe CLI implementation. For more information, see Using team profiles.

Using profiles

Zowe profiles let you store configuration details such as username, password, host, and port for a
mainframe system. Switch between profiles to quickly target different subsystems and avoid typing
connection details on every command.

Profile types

Most command groups require a zosmf-profile , but some plug-ins add their own profile types. For
example, the CICS plug-inhasa cics—profile . The profile type that a command requires is defined in
the PROFILE OPTIONS section of the help response.

https://docs.zowe.org/stable/user-guide/cli-using-displaying-help
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

Tip: The first zosmf profile that you create becomes your default profile. If you don't specify any options
on a command, the default profile is used. Issue zowe profiles —h to learn about listing profiles and

setting defaults.

Creating zosmf profiles

Notes:

* The port defaults to 443 if you omit the ——port option. Specify a different port if your host system
does not use port 443.

e If zJOSMF is configured for high availability in Sysplex, create the CLI zosmf-profile with DVIPA
address/hostname to ensure availability of REST services. For more information, see Configuring
z/OSMF high availability in Sysplex.

Using zosmf profiles

For detailed information about issuing commands, using profiles, and more, see Using CLI.

Writing scripts

You can write Zowe CLI scripts to streamline your daily development processes or conduct mainframe
actions from an off-platform automation tool such as Jenkins or TravisCI.

Example:

You want to delete a list of temporary datasets. Use Zowe CLI to download the list, loop through the list, and
delete each data set using the zowe zos-files delete command.

For more information, see Writing scripts.

Next steps

You successfully installed Zowe CLI, issued your first commands, and wrote a simple script! Next, you might
want to perform the following tasks:

e Issue the zowe ——help command to explore the product functionality, or review the online web help.

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-using-completing-advanced-tasks#writing-scripts
https://docs.zowe.org/stable/user-guide/cli-using-displaying-help

Learn how to configure Zowe CLI run Zowe CLI in daemon mode. Daemon mode significantly improves
the performance of Zowe CLI commands by running Zowe CLI as a persistent background process.

Learn about configuring environment variables to store configuration options.

Learn about integrating with APl Mediation Layer.

Learn about how to write scripts and integrate them with automation server, such as Jenkins.
See what plug-ins are available for the CLI.

Learn about developing for the CLI (contributing to core and developing plug-ins).

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml
https://docs.zowe.org/stable/user-guide/cli-using-completing-advanced-tasks#writing-scripts
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials

Migrating Zowe server component from V1 to
V2

This doc guides you through migrating an existing Zowe server component from version 1 to version 2.

To make Zowe server component compatible with Zowe version 2, you must update the following
configurations.

e Component manifest

Lifecycle scripts

Environment variables

Packaging one component deliverable for both Zowe v1 and v2

Component manifest

In Zowe v2, the component must define a manifest file and package it into the extension's root directory.
This manifest file is used by Zowe to understand how this component should be installed, configured, and
started. For detailed information of this file, see Server Component Manifest File Reference.

Lifecycle scripts

In Zowe v2, lifecycle scripts can be located anywhere in your component directory. However, you must
explicitly define them in the commands section of the component manifest file.

Environment variables
Zowe V1 and v2 environment variables are not exact match. There are the following differences:

e Some variables in Zowe v1 are removed in v2.
* Some are separated into two or more variables.

e Zowe v2 defines more configuration options than v1.

Review the following table for a detailed mapping of Zowe v1 and v2 variables.

https://docs.zowe.org/stable/appendix/server-component-manifest

Zowe v1 Variable

APIML_ALLOW_ENCODED_SLASHES

APIML_CORS_ENABLED

APIML_DEBUG_MODE_ENABLED

APIML_ENABLE_SSO

APIML_GATEWAY_EXTERNAL_MAPPER

APIML_GATEWAY_INTERNAL_HOST

APIML_GATEWAY_INTERNAL_PORT

APIML_GATEWAY_TIMEOUT_MILLIS

APIML_MAX_CONNECTIONS_PER_ROUTE

APIML_MAX_TOTAL_CONNECTIONS

APIML_PREFER_IP_ADDRESS

APIML_SECURITY_AUTH_PROVIDER

APIML_SECURITY_AUTHORIZATION_ENDPOINT_URL

APIML_SECURITY_X509_ENABLED

APIML_SECURITY_ZOSMF_APPLID

CATALOG_PORT

components.gateway.

components.gateway.

components.gateway.

Removed in v2

components.gateway.

Not configurable in v2

components.gateway.

components.gateway.

components.gateway.

components.gateway.

Removed in v2

components.gateway.

components.gateway.

components.gateway.

zOSMF.applId

Zowe v2 YAML Confi

apiml.service.al

apiml.service.co

debug , etc

apiml.security.x

server.internal.

apiml.gateway.ti

server.maxConnec

server.maxTotalC

apiml.security.a

apiml.security.a

apiml.security.x

components.api-catalog.port

Zowe v1 Variable

DISCOVERY_PORT

EXTERNAL_CERTIFICATE_AUTHORITIES

EXTERNAL_COMPONENTS

FILES_API_PORT

GATEWAY_PORT

INSTANCE_DIR

JAVA_HOME

JES_EXPLORER_UI_PORT

JOBS_API_PORT

KEY_ALIAS

KEYSTORE_CERTIFICATE_AUTHORITY

KEYSTORE_CERTIFICATE

KEYSTORE_DIRECTORY

Zowe v2 YAML Confi

components.discovery.port

zowe.certificate.pem.certificateAut

Removed in v2

components.files—api.port

components.gateway.port

Removed in v2

java.home

Removed in v2

components.jobs—-api.port

zowe.certificate.keystore.alias

zowe.certificate.pem.certificateAut

zowe.certificate.pem.certificate

zowe.setup.certificate.pkcsl2.direc

Zowe v1 Variable

KEYSTORE_KEY

KEYSTORE_PASSWORD

KEYSTORE_TYPE

KEYSTORE

LAUNCH_COMPONENT_GROUPS

MVS_EXPLORER_UI_PORT

PKCS11_TOKEN_LABEL

PKCS11_TOKEN_NAME

ROOT_DIR

SKIP_NODE

STATIC_DEF_CONFIG_DIR

TRUSTSTORE

USS_EXPLORER_UI_PORT

Z0we.

Z0we.

Z0WwWe.

Z0we.

Z0We.

Z0we.

certificate

certificate

certificate

certificate

certificate

certificate

Removed in v2

Removed in v2

Removed in v2

Removed in v2

Zowe v2 YAML Confi

. pem. key

. keystore.password

.truststore.passwor

.keystore.type and

.truststore.type

.keystore.file

zowe.runtimeDirectory

Removed in v2

zowe.certificate.truststore.file

Removed in v2

Zowe v1 Variable

ZOSMF_HOST

ZOSMF_PORT

ZOWE_APIM_NONSTRICT_VERIFY_CERTIFICATES

ZOWE_APIM_VERIFY_CERTIFICATES

ZOWE_EXPLORER_FRAME_ANCESTORS

ZOWE_EXPLORER_HOST

ZOWE_INSTANCE

ZOWE_IP_ADDRESS

ZOWE_PREFIX

ZOWE_ZLUX_SECURITY_TYPE

ZOWE_ZLUX_SERVER_HTTPS_PORT

Zowe v2 YAML Confi

z0OSMF. host

zOSMF.port

zowe.verifyCertificates

zowe.verifyCertificates

Removed in v2

zowe.externalDomains or halInstances,

Removed in v2

Removed in v2

zowe. job.prefix

Zowe v1 Variable Zowe v2 YAML Confi

ZOWE_ZLUX_SSH_PORT -

ZOWE_ZLUX_TELNET_PORT -

ZOWE_ZSS_SERVER_PORT -

ZOWE_ZSS_SERVER_TLS -

ZOWE_ZSS_XMEM_SERVER_NAME -

ZWE_CACHING_EVICTION_STRATEGY components.caching-service.storage.
ZWE_CACHING_SERVICE_PERSISTENT components.caching-service.storage.
ZWE_CACHING_SERVICE_PORT components.caching-service.port

ZWE_CACHING_SERVICE_VSAM_DATASET components.caching-service.storage.
ZWE_CACHING_STORAGE_SIZE components.caching-service.storage.

ZWE_DISCOVERY_SERVICES_LIST -

ZWE_DISCOVERY_SERVICES_REPLICAS components.discovery.replicas
ZWE_EXTENSION_DIR zowe.extensionDirectory
ZWE_EXTERNAL_HOSTS zowe.externalDomains

ZWE_EXTERNAL_PORT zowe.externalPort

Zowe v1 Variable

ZWE_LAUNCH_COMPONENTS

ZWE_LOG_LEVEL_ZWELS

ZWEAD_EXTERNAL_STATIC_DEF_DIRECTORIES

ZWES_ZIS_LOADLIB

ZWES_ZIS_PARMLIB_MEMBER

ZWES_ZIS_PARMLIB

ZWES_ZIS_PLUGINLIB

Zowe v2 YAML Confi

Combined information of components.<comg

true

zowe. launchScript. logLevel

Removed in v2

zowe.setup.dataset.authLoadlib

zowe.setup.dataset.parmlib

zowe.setup.dataset.authPluginLib

Packaging one component deliverable for both Zowe v1 and

v2

It is recommended that you create a dedicated package of extensions for Zowe v2, which is the most

straight-forward way to address all of the breaking changes introduced in v2. We understand that this

method presents the challenge of maintaining two sets of packages. If you prefer not to maintain two sets of

packages, it's still possible to maintain one version of an extension which works for both Zowe v1 and v2.

However, the lifecycle code will be complicated and in this case, comprehensive testing should be

performed.

CAUTION

The Zowe v2 App Framework desktop is upgraded from Angular version 6 to angular version 12 for
support and security - websites have a "1 version of a library" limitation. This means that plug-ins
dependent upon Angular must be coded for either v6 or v12 [not both] thus the single version
approach is not applicable.

If the lifecycle scripts are the main concern, the following steps outline requirements and recommendations
for the single version approach:

e Packaging manifest.yaml isrequired. This is a hard requirement for Zowe v2. If you define lifecycle
scripts with default names, for example, use bin/start.sh as commands.start , it should work
for v1.

* Reuvisit all environment variables used in the lifecycle scripts and apply fallback variables. For example, if
you use $ROOT_DIR in Zowe V1, this should be changed to

${ZWE_zowe_runtimeDirectory:-${RO0OT_DIR}} to make it compatible with both versions. Other
variables like $EXPLORER_HOST should be changed to

${ZWE_haInstance_hostname:-${EXPLORER_HOST}} or

${ZWE_externalDomains_0:-${EXPLORER_HOST}} based on purpose.

* In Zowe v2, we recommend you to define extension configurations in the manifestyaml configs
section and use ${ZWE_configs_sx} variables to access them. This feature does not exist in Zowe
v1. Soif youuse ${ZWE_configs_x} variables, it should fall back to the matching environment

variable used in v1.

* In Zowe v2, we recommend you to define a commands.install lifecycle script to handle extension
installation. This lifecycle script will be executed by zwe components install . In V1, this also exists
if you use the zowe—-install-components.sh utility to install a Zowe extension. So if you want one
extension package to work for both Zowe v1and v2, this install lifecycle script should also be
compatible with both v1and v2.

e Anew v2 variable ${ZWE_VERSION} may help you determine the Zowe version number. This variable
does not exist in Zowe v1. By knowing the Zowe version, the lifecycle scripts can implement logic to
source v1 or v2 dedicated scripts to avoid handling fallbacks in the same script. This could help avoid
complicated compatibility version checks, and it could be easier in the future if you decide to drop Zowe

V1.

Version: v2.4.x LTS

Zowe learning resources

Learn more about Zowe from these blog posts, videos, and other resources.

Blogs

e Zowe blogs on Medium

* Zowe blogs on Open Mainframe Project website

Want to contribute a blog? Details for how to contribute to the Zowe blogs on Medium site are at Zowe Blog
Guidelines.

Videos

As well as Zowe videos owned and managed by the community, there are a number of external youtubers
who host Zowe related content.

e Zowe Demos playlist from Bill Pereira

e Mainframe Bytes channel from Jessielaine Punongbayan

https://medium.com/zowe
https://www.openmainframeproject.org/category/blog/zowe
https://medium.com/zowe
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://www.youtube.com/embed?listType=playlist&list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ
https://www.youtube.com/playlist?list=PLM85SdWDWtebJ13Kww8rxKlDlWe72D7b3
https://www.youtube.com/channel/UCZrvxFwT1GpvJuFRyqc5uWg

Webinars

Find out what's happening with Zowe in the Zowe Quarterly Update Webinar Series.

e Zowe Quarterly Update Webinar: October 2021
e Zowe Quarterly Update Webinar: July 2021

e Zowe Quarterly Update Webinar: April 2021

e Zowe Quarterly Update Webinar: January 2021

e Zowe Quarterly Update Webinar: October 2020

The OMP Youtube channel also offers other webinars about Zowe.

» Treat Yourself to a Guided, Comprehensive Tour of Zowe Desktop Applications
e Zowe Webinar Feb. 22, 2019

e Open Mainframe Project Webinar: Zowe Virtual Hackathon

Community
Join us on Slack

¢ Slack invite link

e Introduction to Zowe Slack channels
Learn more about the community
e Zowe community GitHub repo

Find out information about Zowe sub-projects, GitHub repos, mailing lists, community meeting minutes,
contribution guidelines, and so on.

Connect with the community through meetings
e Zowe meeting calendar

You can join one of the Zowe meetings to get latest Zowe updates and get involved in different squads
and initiatives.

Training

https://youtu.be/b0Xo6WIy3vc
https://youtu.be/T3Z4hMwElII
https://youtu.be/9rQCcZGVDzQ
https://youtu.be/ZEwd8wZvbIw
https://youtu.be/GbAFO5vzBhw
https://www.youtube.com/channel/UC-WTXQQtz2m5iTflJLK59aw/videos
https://youtu.be/cbEVbcsaGCs
https://youtu.be/XixEltbRmds
https://youtu.be/zIPzaQK2bfU
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/community/blob/master/README.md
https://lists.openmainframeproject.org/g/zowe-dev/calendar

Courses

e Zowe Fundamentals

Interskill Learning offers a free training course that introduces the components that comprise Zowe and
the benefits of using Zowe and how its capabilities can be extended.

Trials

e Zowe trial

The Zowe trial hosted by IBM is a fully configured z/OS environment with Zowe preinstalled and set up
along with a set of integrated easy-to-follow tutorials that walk you through the basics of Zowe and
gives you hands-on experience of extending Zowe. This no-charge trial is available in two hours for
three days.

e (et started with the Zowe Web Ul

This online tutorial hosted by IBM guides you to add new apps to the Zowe Web UI. It provides a public
hosted Zowe instance that allows you to perform the steps in a z/OS environment.

https://interskill.com/course/zowe-training/
https://www.openmainframeproject.org/projects/zowe/ztrial
https://developer.ibm.com/components/ibmz/tutorials/zowe-step-by-step-tutorial/

Version: v2.4.x LTS

Overview

The installation of Zowe™ consists of the following processes:
e installation of the Zowe server components.

You can install the components either on z/OS only or you can install the components both on z/OS and
on Docker.

e installation of Zowe CLI on a desktop computer.

The Zowe server components provide a web desktop that runs a number of applications such as API
Mediation Layer that includes the Single Sign-on (SSO) capability, organization of the multiple Zowe servers
under a single website, and other useful features for z/OS developers.

Because Zowe is a set of components, before installing Zowe, use this guide to determine which
components you want to install and where you want to install them.

Consider the following scenarios:
e [f you plan to use Zowe CLI on PC only, you may not need to install the Zowe server components.

Note: Some CLI plug-ins require the installation of components on z/OS. If you plan to use core Zowe
CLI groups from your PC, the z/OS you connect to does not require any components of Zowe to be
installed on z/OS, unless you want to take advantage of advanced authentication methods such as
single sign-on or multi-factor authentication.

* If you use the Docker technical preview to run the Linux parts of Zowe in a container, you only need to
configure the Zowe z/OS component to start the ZSS server.

Version: v2.4.x LTS

Installation roadmap

When you install Zowe™ on z/OS, you install the following two parts:

1. The Zowe runtime, which consists of a number of components including:
o Zowe Application Framework

o Zowe API Mediation Layer

o Z Secure Services (ZSS)

2. The Zowe Cross Memory Server, also known as ZIS, which is an APF authorized server application that
provides privileged services to Zowe in a secure manner.

Zowe provides the ability for some of its unix components to be run not under USS, but as a container, see
Installing Zowe Containers.

If you want to configure Zowe for high availability, see High Availability overview for instructions.

Stage 1: Plan and prepare
Before continuing with the installation, you should be familiar with the following topics:

e Zowe's hardware and software requirements
e The zwe utility used for installing, configuring, and managing Zowe

* The configuration file used for Zowe, zowe.yaml

These topics and more are covered in the Planning the installation page.

Stage 2: Install the Zowe z/OS runtime

1. Ensure that the software requirements are met. The prerequisites are described in System

requirements.
2. Choose the method of installing Zowe on z/OS.

The Zowe z/OS binaries are distributed in the following formats. They contain the same contents but
you install them by using different methods. You can choose which method to use depending on your

https://docs.zowe.org/stable/user-guide/k8s-introduction
https://docs.zowe.org/stable/user-guide/zowe-ha-overview
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/systemrequirements-zos

needs.
o Convenience build

The Zowe z/OS binaries are packaged as a PAX file which is a full product install. Transfer this to a
USS directory and expand its contents. Using the zwe command zwe install will extracta

number of PDS members contain load modules, JCL scripts, and PARMLIB entries.
o SMPJE build

The Zowe z/OS binaries are packaged as the following files that you can download. You install this
build through SMPJE.

= A pax.Z file, which contains an archive (compressed copy) of the FMIDs to be installed.

= A readme file, which contains a sample job to decompress the pax.Z file, transform it into a
format that SMP/E can process, and invoke SMPJ/E to extract and expand the compressed
SMPJE input data sets.

o Portable Software Instance (PSWI)

You can acquire and install the Zowe z/OS PAX file as a portable software instance (PSWI) using
z/OSMF.

While the procedures to obtain and install the convenience build, SMP/E build or PSWI are different, the
procedure to configure a Zowe runtime is the same irrespective of how the build is obtained and
installed.

3. Obtain and install the Zowe build.

o For how to obtain the convenience build and install it, see Installing Zowe runtime from a
convenience build.

o For how to obtain the SMPJE build and install it, see Installing Zowe SMPJE.

o For how to obtain the PSWI and install it, see Installing Zowe from a Portable Software Instance.

After successful installation of either a convenience build or an SMP/E build, there will be a zFS folder that
contains the unconfigured Zowe runtime directory, a utility library SZWEEXEC that contains utilities, a
SAMPLIB library SZWESAMP that contains sample members, and a load library SZWEAUTH that contains

load modules. The steps to prepare the z/OS environment to launch Zowe are the same irrespective of the
installation method.

https://docs.zowe.org/stable/user-guide/installandconfig#zwe-server-command
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/install-zowe-smpe
https://docs.zowe.org/stable/user-guide/install-zowe-pswi

Stage 3: Initialize a configuration of the Zowe z/OS
runtime

You can configure the Zowe runtime with one of the following methods depending on your needs.
e Use a combination of JCL and the zwe command zwe init

e Use z/OSMF Workflows

TIP

We recommend you open the links to this configuration procedure in new tabs.

Whether you have obtained Zowe from a .pax convenience build, or an SMP/E distribution, the steps to
initialize the system are the same.

1. Prepare custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.

2. (Required only if you are configuring Zowe for cross LPAR sysplex high availability): Create the VSAM
data sets used by the Zowe API Mediation Layer caching service.

3. APF authorize load libraries containing the modules that need to perform z/OS priviledged security
calls..

4. Initialize Zowe security configurations. Create the user IDs and security manager settings.

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2 you can skip
this security configuration step unless told otherwise in the release documentation.

5. Configure Zowe to use TLS certificates.

6. Install Zowe main started tasks.

TIP

e For testing purposes, it is not necessary to set up certificates when configuring the APl Mediation
Layer. You can configure Zowe without certificate setup and run Zowe with
verify_certificates: DISABLED .

e For production environments, certificate are required. Ensure that certificates for each of the
following services are issued by the Certificate Authority (CA) and that all keyrings contain the

https://docs.zowe.org/stable/user-guide/installandconfig#zwe-server-command
https://docs.zowe.org/stable/user-guide/initialize-mvs-datasets
https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/install-stc-members

public part of the certificate for the relevant CA.
o z/OSMF

o Zowe

o The service that is onboarded to Zowe

Stage 4: (Optional) Customize the configuration

Now that you have the permissions, certificates, tasks, files and datasets necessary to run Zowe, you may
want to customize your Zowe configuration. Through customization, you can change attributes such as:

e Enabling or disabling components so you only run what you need.
e Changing the network ports Zowe runs on to suit your environment.

e Customizing the behavior of a component, such as turning on optional features or logging

It's recommended that the first customization you do is to set zwe to use the Configuration Manager Many

other customization options can be found in Zowe YAML configuration file reference.

Stage 5: (Optional) Installing extensions
You should start zowe for the first time before installing extensions.

After it is customized based on your needs, you can get more value from Zowe through installing extensions,
whether they are optional components from the Zowe project or from other vendors.

You can learn how to install extensions here

Looking for troubleshooting help?

If you encounter unexpected behavior when installing or verifying the Zowe runtime on z/OS, see the
Troubleshooting section for tips.

If you need more information on zwe check the zwe appendix

If you need more information on the server configuration file, check the Zowe YAML configuration file

reference.

https://docs.zowe.org/stable/user-guide/configmgr-using
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/extend/install-configure-zos-extensions
https://docs.zowe.org/stable/troubleshoot/troubleshooting
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Version: v2.4.x LTS

Planning the installation

The following information is required during the Zowe installation process. Software and hardware
prerequisites are covered in the next section.

* The zFS directory where you will install the Zowe runtime files and folders. For more details of setting up
and configuring the UNIX Systems Services (USS) environment, see UNIX System Services
considerations for Zowe.

e A HLQ that the installation can create a load library and samplib containing load modules and JCL
samples required to run Zowe.

e Multiple instances of Zowe can be started from the same Zowe z/OS runtime. Each launch of Zowe has
its own configuration, usually mentioned as Zowe YAML configuration file or zowe.yaml, and zFS
directory that is known as a workspace directory.

e For Zowe in a high availability configuration, there will be only one workspace directory which must be
created on a shared file system (zFS directory) where all LPARs in a Sysplex can access.

 (If not using containerization) Zowe optionally uses a zFS directory to contain its northbound certificate
keys as well as a truststore for its southbound keys if the administrator chooses to use PKCS#12
keystore for certificate storage. Northbound keys are one presented to clients of the Zowe desktop or
Zowe API Gateway, and southbound keys are for servers that the Zowe API gateway connects to. The
certificate directory is not part of the Zowe runtime so that it can be shared between multiple Zowe
runtimes and have its permissions secured independently.

e Zowe has the following started tasks:

o ZWESISTC is across memory server that the Zowe desktop uses to perform APF-authorized
code. More details on the cross memory server are described in Configuring the Zowe cross
memory server.

o ZWESASTC is a cross memory Auxiliary server that is used under some situations in support of a

Zowe extension. Auxiliary server is started, controlled, and stopped by the cross memory server, so
no need to start it manually. More details are described in Zowe auxiliary service

o ZWESLSTC brings up other parts of the Zowe runtime on z/OS as requested. This may include

Desktop, APl mediation layer, ZSS, and more, but when using containerization likely only ZSS will

https://docs.zowe.org/stable/user-guide/configure-uss
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server

be used here. It can be used for a single Zowe instance deployment and can also be used for Zowe
high availability deployment in Sysplex. It brings up and stops Zowe instances, or specific Zowe
components without restarting the entire Zowe instances.

In order for above started tasks to run correctly, security manager configuration needs to be
performed. This is documented in Configuring the z/OS system for Zowe and a sample JCL
member ZWESECUR is shipped with Zowe that contains commands for RACF, TopSecret, and

ACF2 security managers.
Notes:

o To start the APl Mediation Layer as a standalone component, see API Mediation Layer as a
standalone component.

o |f you plan to use API ML with basic authentication and JSON web token authentication, you need
torunonly ZWESLSTC . No need torun ZWESISTC and ZWESASTC .

o |f you plan to use API ML with x509 client-side certificate authentication, you need to run
ZWESISTC and ZWESLSTC .

Topology of the Zowe z/OS launch process

Runtime directory

The runtime directory contains the binaries and executable files. You can create a runtime directory in one of
the following ways:

* Create a directory and extract Zowe convenience build into it.
e Installing the Zowe SMP/E FMID AZWEOQ0O02 using the JCL members in the REL4 member.
e Executing the z/OSMF worklow script ZWERF@1 contained in the SMP/E FMID AZWEOQ0O02.

During execution of Zowe, the runtime directory contents are not modified. Maintenance or APAR release for
Zowe replaces the contents of the runtime directory and are rollup PTFs.

A typical Zowe runtime directory looks like this:

zwe server command

https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/api-mediation-standalone

The zwe command is provided in the <RUNTIME_DIR>/bin directory. You can use this command and

sub-commands to initialize Zowe, manage Zowe instances and fulfill common tasks.

The zwe command has built in help that can be retrieved with the —h suffix. For example, type zwe -h

to display all of the supported commands. These are broken down into a number of sub-commands, and all
of the help can also be found on this website, in (the zwe appendix

Other useful global parameters are:

e ——debug or -v toenable verbose mode.
e ——trace or -vv toenable trace mode for current command.
e ——log-dir or -1 to also write output to log files.

Add the zwe command to your PATH

If you expect to only have one copy of the Zowe runtime on your system, it is convenient to be able to
access its copy of zwe from your user at any location within USS. You can add this Zowe bin directory to
your PATH environment variable so you can execute the zwe command without having to fully qualify its

location. To update your PATH, run the following command:

This will update the PATH for the current shell. To make this update persistent, you can add the line to your
~/.profile file, orthe ~/.bash_profile fileif you are using a bash shell. To make this update system
wide, you can update the /etc/.profile file. Once the PATH is updated, you can execute the zwe
command from any USS directory. For the remainder of the documentation when zwe command is

referenced, it is assumed that it has been added to your PATH .

Note: You may not want to add zwe to your PATH if you have multiple copies of the Zowe runtime, as this

can confuse which one you are utilizing

z/OS Data sets used by Zowe

After Zowe is properly installed, you should have these data sets created on z/OS under the prefix you
defined:

e <prefix>.SZWEAUTH contains authorized binaries used by Zowe components. In particular, ZIS
needs this to run.

e <prefix>.SZWELOAD contains binaries that do not need authorization. In particular, this contains a
version of config manager that can be accessed within REXX.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe

e <prefix>.SZWEEXEC contains few utility executables will be used by Zowe.

* <prefix>.SZWESAMP contains sample JCLs to help you configure or start Zowe.

If you install Zowe with convenience build, these data sets will be created by zwe install command. If
you install Zowe with SMPE or equivalent methods, these data sets will be created during install and you are
not required to run zwe install command. The above data sets will be overwritten during upgrade

process.

Zowe configuration and runtime also use few other data sets to store customization. These data sets will not
be overwritten during upgrade.

e zowe.setup.datasets.parmlib defined in Zowe configuration, which contains user customized
PARMLIB members.

e zowe.setup.datasets.jcllib defined in Zowe configuration, which contains user customized
JCLs or JCLs generated by zwe init command.

e zowe.setup.datasets.authLoadlib defined in Zowe configuration is optional. If the user choose
to copy out load libraries from <prefix>.SZWEAUTH , they will be placed here. With this option, you

have better control on what will be APF authorized other than authorize whole <prefix>.SZWEAUTH .

e zowe.setup.datasets.authPluginLib defined in Zowe configuration contains extra load libraries

used by ZIS plugins.

* zowe.setup.datasets.loadlib defined in zowe configuration contains load libraries that do not

need authorization, such as a version of the configuration manager that can be used within REXX.

Zowe configuration file

Zowe uses a YAML format configuration. If you store the configuration on USS, this file is usually referred as
zowe.yaml .

This configuration file can be placed on a location with these requirements:

e Zowe runtime user, usually referred as ZWESVUSR , must have read permission to this file.

 If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same
configuration file. That means this configuration file should be placed in a shared file system (zFS
directory) where all LPARs in a Sysplex can access.

e Zowe configuration file may contain sensitive configuration information so it should be protected
against malicious accessing.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init

To create this configuration, you can copy from example-zowe.yaml located in Zowe runtime directory.
Please be aware of the zowe.runtimeDirectory definition in the configuration file, it should match the

Zowe runtime directory mentioned above.
To learn more about this configuration, please check Zowe YAML configuration file reference.

When you execute the zwe command, the ——config or —c argumentis used to pass the location of a

zowe.yaml file.

TIP

To avoid passing ——config or —c toevery zwe commands, you can define

ZWE_CLI_PARAMETER_CONFIG environment variable points to location of zowe.yaml.

For example, after defining export ZWE_CLI_PARAMETER_CONFIG=/path/to/my/zowe.yaml ,
you can simply type zwe start instead of full command zwe start -c

/path/to/my/zowe.yaml .

TIP

If you are new to the example-zowe.yaml configuration file, you can start with entries that are
marked with COMMONLY_CUSTOMIZED . It highlights most of the common configurations, such as
directories, host and domain name, service ports, certificate setup, and z/OSMF, which are critical for
standing a new Zowe instance.

Workspace directory

The workspace directory is required to launch Zowe. It is automatically created when you start Zowe. More
than one workspace directory can be created and used to launch multiple instances of Zowe sharing the
same runtime directory. It's not recommended to create workspace directory manually in order to avoid
permission conflicts.

Zowe instances are started by running the server command zwe start . This creates a started task with
the PROCLIB member ZWESLSTC that is provided with the samplib SZWESAMP created during the
installation of Zowe. The JCL member ZWESLSTC starts Zowe launcher under which it launches Zowe

components address spaces.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Zowe enables read and write permission to both Zowe runtime user (ZWESVUSR by default) and Zowe

admin group (ZWEADMIN by default) for Zowe workspace directory.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same workspace
directory, which means it should be placed in a shared file system (zFS directory) where all LPARs in a
Sysplex can access.

The workspace directory should be defined in your Zowe configuration file as

zowe.workspaceDirectory .

Log directory

Some Zowe components will write logs to file system. The directory will be created automatically when you
start Zowe and the content will be automatically managed by Zowe components. It's not recommended to
create log directory manually in order to avoid permission conflicts.

Multiple Zowe instances can define different log directories, they are not necessary to be shared in Sysplex
deployment like workspace directory.

The log directory should be defined in your Zowe configuration file as zowe. logDirectory .

Keystore directory

Zowe uses certificates to enable transport layer security. The system administrator can choose to use z/OS
Keyring or PKCS#12 keystore for certificate storage. A keystore directory will be created and used if
PKCS#12 keystore is chosen.

A typical PKCS#12 keystore directory looks like:

To generate keystore directory, you need proper zowe.setup.certificate configuration definedin
Zowe configuration file and then execute server command zwe init certificate . To learn more about

this command, check Reference of zwe init certificate.

Extension directory

Zowe allows server extensions to expand its core functionalities. The extensions are required to be installed
in a central location so Zowe runtime can find and recognize them.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate

Similar to Zowe runtime directory, this extension directory should be created by the administrators perform
Zowe installation and configuration task. Zowe runtime user, typically ZWESVUSR requires read-only

permission to this directory.

The extension directory should be created by system administrator and defined in your Zowe configuration

fileas zowe.extensionDirectory .

Zowe uses zwe components install command to install Zowe server extensions. This command will

create sub-directories or symbolic links under the extension directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install

Version: v2.4.x LTS

UNIX System Services considerations for
Zowe

The Zowe z/OS component runtime requires USS to be configured. As shown in the Zowe architecture, a
number of servers run under UNIX System Services (USS) on z/OS. Review this topic for knowledge and
considerations about USS when you install and configure Zowe.

* Introduction

e Setting up USS for the first time
e Language environment

e OMVS segment

e Address space region size

What is USS?

The UNIX System Services element of z/OS® is a UNIX operating environment, which is implemented within
the z/OS operating system. It is also known as z/OS UNIX. z/OS UNIX files are organized in a hierarchy, as in
a UNIX system. All files are members of a directory, and each directory in turn is a member of another
directory at a higher level in the hierarchy. The highest level of the hierarchy is the root directory. The z/OS
UNIX files system is also known as zFS.

For more information on USS, see the following resources:

e |ntroduction to z/OS UNIX for z/OS 2.2
¢ [ntroduction to z/OS UNIX for z/OS 2.3
e Introduction to z/OS UNIX for z/OS 2.4

Setting up USS for the first time

If you have not enabled USS for your z/OS environment before, the SMPJE distribution of Zowe provides a
number of JCL jobs to assist with this purpose. You can consult with your USS administrator if you need
more information such as the USS file system.

https://docs.zowe.org/stable/getting-started/zowe-architecture
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxb200/int.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/int.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxb200/int.htm

Language environment

To ensure that Zowe has enough memory, the recommended HEAP64 site should be large enough.

OMVS segment

Users who install Zowe to run Zowe scripts need to have an OMVS segment. If the user profile doesn't have
OMVS segment, the following situations might occur:

* When you access USS through TSO OMVS, you will see the following message:

e When you access USS through SSH, you will see the following message:

Address space region size

Java as a prerequisite for Zowe requires a suitable z/OS region size to operate successfully while you install
and configure Zowe. It is suggested that you do not restrict the region size, but allow Java to use what is
necessary. Restricting the region size might cause failures with storage-related error messages such as the
following one:

You can fix the storage-related issue by making one of the following changes:
e ASSIZEMAX parameter

The ASSIZEMAX parameter is the maximum size of the process's virtual memory (address space) in
bytes.

To specify the JVM maximum address space size on a per-user basis, set the ASSIZEMAX configuration
parameter to the value of 2147483647 .

Note: Running a shell script via TSO OMVS will run the shell in the TSO address space, unless you
specify _BPX_SHAREAS=NO when invoking OMVS. If you are using TSO OMVS to install Zowe, you will
need export _BPX_SHAREAS=NO to make the ASSIZEMAX change effective.

e SIZE parameter of TSO segment

Set SIZE operand of TSO segment to the value of 2096128 .

Note: If you set export _BPX_SHAREAS=YES in your shell setup as recommended, Java will run in

the TSO address space and the SIZE change will work.

ulimit -A

The maximum address space size for the process should be at least 250 M, in units of 1024 bytes. For
example, ulimit -A 250000 .

Note: Running ulimit -a displays the current process limits.

Version: v2.4.x LTS

System requirements

Before installing Zowe™ z/OS components, ensure that your z/OS environment meets the prerequisites. The
prerequisites you need to install depend on what Zowe z/OS components you want to use and how you want
to install and configure Zowe on z/OS. Therefore, assess your installation scenario and install the
prerequisites that meet your needs.

All Zowe server components can be installed on a z/OS environment, while some can alternatively be
installed on Linux or zLinux via Docker. The components provide a number of services that are accessed
through a web browser such as an API catalog and a web desktop.

e System requirements
o z/OS system requirements
= 7/OS
= Node.js
= Java
= 7/OSMF (Optional)

o User ID requirements
= ZWESVUSR

» ZWESIUSR
= ZWEADMIN
= zowe_user
o Network requirements
o Zowe Containers requirements
o Zowe Desktop requirements (client PC)

o Feature requirements
= Multi-Factor Authentication (MFA)

= Single Sign-On (SSO)

o Memory requirements

z|/OS system requirements

Be sure your z/OS system meets the following prerequisites.

z[|OS
e 7/OS version in active support, such as Version 2.3 and Version 2.4

Note: z/OS V2.2 reached end of support on 30 September 2020. For more information, see the z/OS
v2.2 lifecycle details https://www.ibm.com/support/lifecycle/details?q45=2497063S01245B61.

» zFS volume with at least 833 mb of free space for Zowe server components, their keystore, instance
configuration files and logs, and third-party plug-ins.

e (Optional, recommended) z/OS OpenSSH V2.2.0 or later

Some features of Zowe require SSH, such as the Desktop's SSH terminal. Or, you want to install and
manage Zowe via SSH, as an alternative to OMVS over TN3270.

e (Optional, recommended) Parallel Sysplex.

To deploy Zowe for high availability, a Parallel Sysplex environment is recommended. Please check
Configuring Sysplex for high availability for more information.

Node.js

e Node.js v14.x (except v14.17.2), or v16.x

Node is not included with z/OS so must be installed separately. To install Node.js on z/OS, follow the
instructions in Installing Node.js on z/OS.

Note: If you are a software vendor building extensions for Zowe, when using Node.js v14.x or later, it is
highly recommended that plug-ins used are tagged. For more information, see Tagging on z/OS.

Java

* |IBM SDK for Java Technology Edition V8

z/OSMF (Optional)

e (Optional, recommended) IBM z/OS Management Facility (z/7OSMF) Version 2.2, Version 2.3 or Version
2.4.

https://www.ibm.com/support/lifecycle/details?q45=Z497063S01245B61
https://docs.zowe.org/stable/user-guide/configure-sysplex
https://docs.zowe.org/stable/user-guide/install-nodejs-zos
https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins#tagging-plugin-files-on-z-os

z/OSMF is included with z/OS so does not need to be separately installed. If zZOSMF is present, Zowe
will detect this when it is configured and use z/OSMF for the following purposes:

o Authenticating TSO users and generating a single sign-on JSON Web Token (JWT). Ensure that the
z/OSMF JWT Support is available via APAR and associated PTFs. If zJOSMF is not available, then
Zowe is still able to provide SSO by generating its own JWT and making direct SAF calls.

o REST API services for Files (Data Sets and USS), JES, and z/OSMF workflows. These are used by
some Zowe applications such as the Zowe Explorers in the Zowe Desktop. If zZOSMF REST APIs are
not present, other Zowe desktop application, such as the File Editor that provides access to USS
directories and files as well as MVS data sets and members, will work through the Zowe Z Secure
Services (ZSS) component to access z/OS resources.

Tips:

o For non-production use of Zowe (such as development, proof-of-concept, demo), you can
customize the configuration of z/OSMF to create what is known as "z/OS MF Lite" that simplifies
the setup of z/JOSMF. As z/OS MF Lite only supports selected REST services (JES, DataSet/File,
TSO and Workflow), you will observe considerable improvements in startup time as well as a
reduction in the efforts involved in setting up z/OSMF. For information about how to set up z/OSMF
Lite, see Configuring z/OSMF Lite (non-production environment).

o For production use of Zowe, see Configuring z/OSMF.

User ID requirements

Specific user IDs with sufficient permissions are required to run or access Zowe.

ZWESVUSR

This is a started task ID for ZWESLSTC .

The task starts a USS environment using BPXBATSL that executes the core Zowe Desktop (ZLUX) node.js
server, the Java APl Mediation Layer, and the Z Secure Services C component. To work with USS, the user ID
ZWESVUSR must have a valid OMVS segment.

Class ID Access Reason

https://www.ibm.com/support/pages/apar/PH12143
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf

Class ID Access Reason

To generate symmetric keys using ICSF that is
used by Zowe Desktop cookies. The list of IDs
to enable will include CSF1TRD , CSF1TRC ,

CSFSERV Multiple READ CSF1SKE , CSF1SKD . The full list of IDs is
described in the z/OS Cryptographic Services
user guide for your z/OS release level: 2.2, 2.3,
2.4 and 2.5.

To allow Zowe ZWESVSTC processes to access

FACILITY ZWES. IS READ
the Zowe ZIS cross memory server
To allow the Zowe Desktop ZLUX server to run
BPX.SERVER + code on behalf of the API requester's TSO user
FACILITY UPDATE]))
BPX.DAEMON ID. For more information, see Security
Environment Switching.
To allow Zowe to map an X.509 client certificate
FACILITY IRR.RUSERMAP READ

to a z/OS identity

To allow z/OS address spaces for unix
FACILITY BPX.JOBNAME READ processes to be renamed for ease of
identification

To allow Zowe to obtain information about
FACILITY IRR.RADMIN.LISTUSER READ OMVS segment of the user profile using
LISTUSER TSO command

Optional To allow Zowe Desktop vendor
APPL 'OMVSAPPL' READ
extensions the ability to use single-sign on.

ZWESIUSR

This is a started task ID used to run the PROCLIB ZWESISTC that launches the cross memory server (also
known as ZIS). It must have a valid OMVS segment.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://www.ibm.com/docs/en/zos/2.2.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.3.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.4.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.5.0?topic=ssl-racf-csfserv-resource-requirements
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-address-space-job-naming
https://docs.zowe.org/stable/user-guide/configure-xmem-server

ZWEADMIN

This is a group that ZWESVUSR and ZWESIUSR should belong to. It must have a valid OMVS segment.

zowe_user

If zJOSMF is used for authentication and serving REST APIs for Zowe CLI and Zowe Explorer users, the TSO
user ID for end users must belong to one or both of the groups IZUUSER or IZUADMIN .

Network requirements

The following ports are required for Zowe. These are default values. You can change the values by updating
variable values inthe zowe.yaml file.

Port
zowe.yaml variable name Purpose
number
550 zowe.components.api- Used to view APl swagger / openAPI specifications for
catalog.port registered API services in the API Catalog.
563 zowe.components.api- Discovery server port which dynamic API services can
catalog.port issue APIs to register or unregister themselves.
The northbound edge of the API Gateway used to
accept client requests before routing them to registered
7554 zowe.components.gateway.port APl services. This port must be exposed outside the

z/OS network so clients (web browsers, VS Code,
processes running the Zowe CLI) can reach the gateway.

] Port of the caching service that is used to share state
zowe.components.caching- _))) o
7/5515)] between different Zowe instances in a high availability
service.port
topology.

o zowe.components.app- The Zowe Desktop (also known as ZLUX) port used to
server.port log in through web browsers.

Port

zowe.yaml variable name Purpose
humber
Z Secure Services (ZSS) provides REST API services to
7557 zowe.components.zss.port ZLUX, used by the File Editor application and other ZLUX
applications in the Zowe Desktop.
)) Port of the service that provides REST APIs to z/OS jobs
7558 zowe.components.jobs-api.port
used by the JES Explorer.
)) Port of the service that provides REST APIs to MVS and
7559 zowe.components.files-api.port

USS file systems.

) Port of the JES Explorer GUI for viewing and working
zowe.components.explorer-jes o]
with jobs in the Zowe Desktop.

zowe.components.explorer- Port of the MVS Explorer GUI for working with data sets
mvs in the Zowe Desktop.

Port of the USS Explorer GUI for working with USS in the

zowe.components.explorer-uss
Zowe Desktop.

Zowe Containers requirements

Zowe (server) containers are available for download as an alternative to running Zowe servers on z/OS
through the Zowe convenience and SMPJE builds Check Zowe Containers Prerequisites page for more
details.

Zowe Desktop requirements (client PC)

The Zowe Desktop is powered by the Application Framework which has server preregs depending on where
it is installed

e Zowe Application Framework on z/OS requirements

e Application Framework on Docker prerequisites

https://docs.zowe.org/stable/user-guide/k8s-prereqs

The Zowe Desktop runs inside of a browser. No browser extensions or plugins are required. The Zowe
Desktop supports Google Chrome, Mozilla Firefox, Apple Safari and Microsoft Edge releases that are at most
1 year old, except when the newest release is older. For Firefox, both the regular and Extended Support
Release (ESR) versions are supported under this rule.

Currently, the following browsers are supported:

Google Chrome V79 or later

Mozilla Firefox V68 or later

Safari V13 or later
Microsoft Edge 79

If you do not see your browser listed here, please contact the Zowe community so that it can be validated
and included.

Feature requirements

Zowe has several optional features that have additional prerequisites as follows.

Multi-Factor Authentication (MFA)

Multi-factor authentication is supported for several components, such as the Desktop and API Mediation
Layer. Multi-factor authentication is provided by third-party products which Zowe is compatible with. The
following are known to work:

¢ CA Advanced Authentication Mainframe

e |BM Z Multi-Factor Authentication.
Note: To support the multi-factor authentication, it is necessary to apply z/OSMF APAR PH39582.
For information on using MFA in Zowe, see Multi-Factor Authentication.

Note: MFA must work with Single sign-on (SSO). Make sure that SSO is configured before you use MFA in
Zowe.

Single Sign-On (SSO)

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/us-en/marketplace/ibm-multifactor-authentication-for-zos
https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/stable/user-guide/mvd-configuration#multi-factor-authentication-configuration

Zowe has an SSO scheme with the goal that each time you use multiple Zowe components you should only

be prompted to login once.
Requirements:

* IBM z/OS Management Facility (z/OSMF)

Memory requirements
Zowe API ML components have following memory requiremets:
Component name Memory usage
Gateway service 256MB
Discovery service 256MB
API Catalog 512MB
Metrics service 512MB

Caching service 512MB

Version: v2.4.x LTS

Installing Node.js on z/OS

Note: This section is not required if using Docker or only using the CLI.

Before you install Zowe™ on z/OS, you must install IBM SDK for Node.js on the same z/OS server that hosts
the Zowe Application Server and z/OS Explorer Services. Review the information in this topic to obtain and
install Node.js.

e Supported Node.js versions

How to obtain IBM SDK for Node.js - z/OS

Hardware and software prerequisites

Installing the PAX edition of Node.js - z/OS
Installing the SMPJE edition of Node.js - z/OS

Supported Node.js versions

The following Node.js versions are supported to run Zowe. See the Hardware and software prerequisites
section for the prerequisites that are required by Zowe.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some
software packages, which might be listed as prerequisites there, are NOT required by Zowe. Specifically, you
do NOT need to install Python, Make, Perl, or C/C++ runtime or compiler. If you can run node —-version

successfully, you have installed the prerequisites required by Zowe.

Notice: IBM SDK for node.js had withdrawn v12 from marketing on September 6, 2021 and ended v12
service on September 30, 2022.

e Vv14.x (except v14.17.2)
o z/OS V2R3: PTFs UI61308, UI61375, UI61747 (APARs PH07107, PH08352, PH09543)

o z/OS V2R4: PTFs UI64830, UI64837, UI64839, UI64940, UI65567 (APARS PH14560, PH15674,
PH14559, PH16038, PH17481)

Known issue: There is a known issue with node.js v14.17.2. It will cause the error of ZWESLSTC

not found in "<dsn-prefix>.SZWESAMP" when yourunthe zowe-install-proc.sh

https://www.ibm.com/docs/en/sdk-nodejs-zos
https://www-01.ibm.com/support/docview.wss?uid=isg1PH07107
https://www-01.ibm.com/support/docview.wss?uid=swg1PH08352
https://www-01.ibm.com/support/docview.wss?uid=swg1PH09543
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH15674
https://www.ibm.com/support/pages/apar/PH14559
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/support/pages/apar/PH17481

utility.
e Vv16.X

o z/OS V2R4: PTFs UI64830, UI64837, UI64839, UI64940, UIG5567.
o 7/OS V2R5: PTFs U164830, UI64837,U164940.

How to obtain IBM SDK for Node.js - z/OS

You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

e Order the SMPJE edition through your IBM representative if that is your standard way to order IBM
software.

e Order the SMPJE edition through IBM Shopz with optional paid support available.

e Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not
available for this format.

For more information, see the blog "Options on how to obtain IBM Open Enterprise SDK for Node.js".

Hardware and software prerequisites
To install Node.js for Zowe, the following requirements must be met.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some
software packages, which might be listed as prerequisites there, are NOT required by Zowe. Specifically, you
do NOT need to install Python, Make, Perl, or C/C++ runtime or compiler.

If youcanrun node —-version successfully, you have installed the Node.js prerequisites required by

Zowe.
Hardware:
IBM zEnterprise® 196 (z196) or newer
Software:
e 7/OS UNIX System Services enabled

* Integrated Cryptographic Service Facility (ICSF) configured and started

https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH14559
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/support/pages/apar/PH17481
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH15674
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/products/sdk-nodejs-compiler-zos
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bruce-armstrong/2022/07/27/options-on-how-to-obtain-ibm-open-enterprise-sdk-f
https://www.ibm.com/docs/en/sdk-nodejs-zos

ICSF is required for Node.js to operate successfully on z/OS. If you have not configured your z/OS
environment for ICSF, see Cryptographic Services ICSF: System Programmer's Guide. To see whether
ICSF has been started, check whether the started task ICSF or CSF is active.

Installing the PAX edition of Node.js - z/OS
Follow these steps to install the PAX edition of Node.js - z/OS to run Zowe.
1. Download the pax.Z file to a z/OS machine.
2. Extract the pax.Z file inside an installation directory of your choice. For example:
pax —-rf <path_to_pax.Z_file> —-x pax
3. Add the full path of your installation directory to your PATH environment variable:
4. Run the following command from the command line to verify the installation.
If Node.js is installed correctly, the version of Node.js is displayed.

5. After you install Node.js, set the NODE_HOME environment variable to the directory where Node.js is
installed. For example, NODE_HOME=/proj/mvd/node/installs/node-v6.14.4-05390-5390x .

Installing the SMP/E edition of Node.js - z/OS

To install the SMPJE edition of Node.js, see the documentation for IBM SDK for Node.js - z/OS. Remember
that the software packages Perl, Python, Make, or C/C++ runtime or compiler that the Node.js
documentation might mention are NOT needed by Zowe.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm
https://www.ibm.com/docs/en/sdk-nodejs-zos

Version: v2.4.x LTS

Configuring z/OSMF

The following information contains procedures and tips for meeting z/OSMF requirements. For complete

information, go to IBM Knowledge Center and read the following documents.

e IBM z/OS Management Facility Configuration Guide
e |BM z/OS Management Facility Help

z/OS requirements for z/OSMF configuration

Ensure that the z/OS system meets the following requirements:

Requirements Description

z/OS uses AXR (System REXX) component to perform Incident Log

AXR (System i)
REXX) tasks. The component enables REXX executable files to run outside
of conventional TSO and batch environments.
Common The CEA server, which is a co-requisite of the Common Information
Event Adapter Model (CIM) server, enables the ability for z/OSMF to deliver z/OS
(CEA) server events to C-language clients.
Common) L
) z/OSMF uses the CIM server to perform capacity-provisioning and
Information
workload-management tasks. Start the CIM server before you start
Model (CIM)

z/OSMF (the IZU* started tasks).
server

Resources in
IBM
Knowledge
Center

System REXX

Customizing
for CEA

Reviewing
your CIM
server setup

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3/en/homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/systemrexx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zb100/custcea.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm

Resources in

IBM
Requirements Description
Knowledge
Center
Customizing
the
CONSOLE and o
The CONSOLE and CONSPROF commands must exist in the CONSOLE
CONSPROF)
authorized command table. and
commands
CONSPROF
commands
) .) Software
IBM® 64-bit SDK for z/OS®, Java Technology Edition V8 or later is o
Java level) prerequisites
required.
for zJOSMF
] To prevent exceeds maximum region size errors, verify that the
TSO region
. TSO maximum region size is a minimum of 65536 KB for the z/OS N/A
size

system.

User IDs require a TSO segment (access) and an OMVS segment.

User ID During workflow processing and REST API requests, z/OSMF might N/A
ser IDs
start one or more TSO address spaces under the following job

names: userid; substr(userid, 1, 6) CN (Console).

Configuring z/OSMF
Follow these steps:
1. From the console, issue the following command to verify the version of z/OS:
Part of the output contains the release, for example,
2. Configure z/OSMF.

z/OSMF is a base element of z/OS V2.2 and V2.3, so it is already installed. But it might not be configured
and running on every z/OS V2.2 and V2.3 system.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_SoftwarePrereqs.htm

In short, to configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKEFS, and then
start the z/OSMF server. The z/JOSMF configuration process occurs in three stages, and in the following

order:
o Stage 1 - Security setup
o Stage 2 - Configuration
o Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how
to configure z/OSMF, see Configuring z/OSMF for the first time if you use z/OS V2.2 or Setting up
z/OSMF for the first time if V2.3.

Note: In z/OS V2.3, the base element z/OSMF is started by default at system initial program load (IPL).
Therefore, z/JOSMF is available for use as soon as you set up the system. If you prefer not to start z/ OSMF
automatically, disable the autostart function by checking for START commands for the z/OSMF started
procedures in the COMMNDxx parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator
console such as Zowe™ CLI's RestConsoles API require Version 2.3.

3. Verify that the z/JOSMF server and angel processes are running. From the command line, issue the
following command:

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

After you see the message ""CWWKBOO056I INITIALIZATION COMPLETE FOR ANGEL"", issue the
following command to start the server:

The server might take a few minutes to initialize. The z/OSMF server is available when the message
""CWWKFOO011I: The server zosmfServer is ready to run a smarter planet."" is displayed.

4. Issue the following command to find the startup messages in the SDSF log of the z/OSMF server:
You could see a message similar to the following message, which indicates the port number:
In this example, the port number is 443. You will need this port number later.

Point your browser at the nominated z/OSMF STANDALONE Server home page and you should see its
Welcome Page where you can log in.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

Note: If your implementation uses an external security manager other than RACF (for example, Top Secret

for z/OS or ACF2 for z/OS), you provide equivalent commands for your environment. For more information,

see the following product documentation:

e Configure z/OS Management Facility for Top Secret

e Configure z/OS Management Facility for ACF2

z/OSMF REST services for the Zowe CLI

The Zowe CLI uses z/OSMF Representational State Transfer (REST) APIs to work with system resources and

extract system data. Ensure that the following REST services are configured and available.

z|OSMF
REST
services

Cloud
provisioning

services

TSOJE
address
space
services

z/OS
console

services

z/OS data
set and file
REST
interface

Requirements

Cloud provisioning services are required for the Zowe CLI CICS and
Db2 command groups. Endpoints begin with
/zosmf/provisioning/

TSOJE address space services are required to issue TSO commands in
the Zowe CLI. Endpoints begin with /zosmf/tsoApp

z/OS console services are required to issue console commands in the
Zowe CLI. Endpoints begin with /zosmf/restconsoles/

z/OS data set and file REST interface is required to work with
mainframe data sets and UNIX System Services files in the Zowe CLI.
Endpoints begin with /zosmf/restfiles/

Resources in
IBM
knowledge
Center

Cloud
provisioning

services

TSO/E
address
space
services

z/OS console
services

z/OS data set
and file REST
interface

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-top-secret.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_CloudProvSecuritySetup.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_TSOServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTCONSOLE.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTFILES.htm

Resources in

z|OSMF
. IBM
REST Requirements
. knowledge
services
Center

z/OS jobs z/OS jobs
R/ESTJ z/OS jobs REST interface is required to use the zos-jobs command R/ESTJ
) group in the Zowe CLI. Endpoints begin with /zosmf/restjobs/)
interface interface
z/OSMF z/OSMF workflow services is required to create and manage z/OSMF z/OSMF
workflow workflows on a z/OS system. Endpoints begin with workflow
services /zosmf/workflow/ services

Zowe uses symbolic links to the z/OSMF bootstrap.properties ,
jvm.security.override.properties ,and ltpa.keys files. Zowe reuses SAF, SSL, and LTPA

configurations; therefore, they must be valid and complete.
For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint
into your browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

Notes:

* Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO
user credentials.

e The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw
JSON format.

Configuration of zJOSMF to properly work with API ML

There is an issue observed in z/JOSMF which leads to a stuck JSON web token(JWT). It manifests as the
endpoint /zosmf/services/authenticate issuing a JWT with success RC that is not valid for API calls,
resulting in 401 response status code. This is a persistent condition. To get the token unstuck, perform a
logout with the LTPA token from the login request. This causes logins to start serving unique JWTs again.
Until this issue is properly fixed in zZOSMF, we propose a possible temporary workaround. Update z/OSMF

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_WorkflowServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_RESTServices.htm
https://mvs.ibm.com/zosmf/restjobs/jobs

configuration with allowBasicAuthLookup="false" . After applying this change, each authentication

call results in generating a new JWT.

Version: v2.4.x LTS

Configuring zJOSMF Lite (for non-production
use)

This section provides information about requirements for z/OSMF Lite configuration.

Disclaimer: z/OSMF Lite can be used in a non-production environment such as development, proof-of-
concept, demo and so on. It is not for use in a production environment. To use z/OSMF in a production
environment, see Configuring z/OSMF.

e Configuring z/OSMF Lite (for non-production use)

o

Introduction

[¢]

Assumptions

[¢]

Software Requirements
= Minimum Java level

= WebSphere® Liberty profile (z/OSMF V2R3 and later)
= System settings

= Web browser

[¢]

Creating a z/OSMF nucleus on your system
= Running job IZUNUSEC to create security
= Before you begin

= Procedure
= Results
= Common errors

= Running job IZUMKEFS to create the z/OSMF user file system
= Before you begin

= Procedure
= Results
= Common errors

= Copying the IBM procedures into JES PROCLIB
= Before you begin

= Procedure

= Results

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf

= Common errors

= Starting the z/OSMF server
= Before you begin

= Procedure
= Results

= Accessing the zZOSMF Welcome page
= Before you begin

= Procedure
= Results
= Common errors

= Mounting the z/OSMF user file system at IPL time
= Before you begin

= Procedure
= Results

o Adding the required REST services
= Enabling the z/OSMF JOB REST services
= Procedure

= Results
= Common errors

= Enabling the TSO REST services
= Before you begin

= Procedure
= |ZUTSSEC
= Results

» Enabling the z/OSMF data set and file REST services
= Before you begin

= Procedure
= Results
= Common errors

= Enabling the z/OSMF Workflow REST services and Workflows task Ul
= Before you begin

= Procedure
= Results

o Troubleshooting problems

= Common problems and scenarios

» System setup requirements not met

= Tools and techniques for troubleshooting
» Common messages

o Appendix A. Creating an IZUPRMxx parmlib member
o Appendix B. Modifying IZUSVR1 settings

o Appendix C. Adding more users to z/OSMF
= Before you Begin

= Procedure

= Results

e Appendix A. Creating an IZUPRMxx parmlib member
e Appendix B. Modifying IZUSVR1 settings

e Appendix C. Adding more users to z/OSMF

Introduction

IBM® z/OS® Management Facility (zZ7OSMF) provides extensive system management functions in a task-
oriented, web browser-based user interface with integrated user assistance, so that you can more easily
manage the day-to-day operations and administration of your mainframe z/OS systems.

By following the steps in this guide, you can quickly enable z/JOSMF on your z/OS system. This simplified
approach to set-up, known as "z/OSMF Lite", requires only a minimal amount of z/OS customization, but
provides the key functions that are required by many exploiters, such as the open mainframe project
(Zowe™).

A z/OSMF Lite configuration is applicable to any future expansions you make to z/OSMF, such as adding

more optional services and plug-ins.

It takes 2-3 hours to set up z/OSMF Lite. Some steps might require the assistance of your security

administrator.

For detailed information about various aspects of z/OSMF configuration such as enabling the optional plug-
ins and services, see the IBM publication zZOSMF Configuration Guide.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

Assumptions

This document is intended for a first time z/OSMF setup. If zJOSMF is already configured on your system,
you do not need to create a z/OSMF Lite configuration.

This document is designed for use with a single z/OS system, not a z/OS sysplex. If you plan to run z/OSMF
in a sysplex, see z/OSMF Configuration Guide for multi-system considerations.

It is assumed that a basic level of security for z/JOSMF is sufficient on the z/OS system. IBM provides a
program, IZUNUSEC, to help you set up basic security for a zZJOSMF Lite configuration.

System defaults are used for the z/OSMF environmental settings. Wherever possible, it is recommended that
you use the default values. If necessary, however, you can override the defaults by supplying an IZUPRMxx
member, as described in Appendix A. Creating an IZUPRMxx parmlib member.

It is recommended that you use the following procedures as provided by IBM:
e Started procedures IZUSVR1 and IZUANG1
e Logon procedure IZUFPROC

Information about installing these procedures is provided in Copying the IBM procedures into JES PROCLIB.

Software Requirements

Setting up z/OSMF Lite requires that you have access to a z/OS V2R2 system or later. Also, your z/OS

system must meet the following minimum software requirements:

Minimum Java level

WebSphere® Liberty profile (z/OSMF V2R3 and later)

System settings

Web browser

Minimum Java level

Java™ must be installed and operational on your z/OS system, at the required minimum level. See the table
that follows for the minimum level and default location. If you installed Java in another location, you must
specify the JAVA_HOME statement in your IZUPRMxx parmlib member, as described in Appendix A.
Creating an IZUPRMxx parmlib member.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

z/|OS . Recommended .
. Minimum level of Java™ Default location
Version level of Java

IBM® 64-bit SDK for z/OS®, Java

Technology Edition V7.1 (SR3), with IBM® 64-bit SDK
the PTFs for APAR P171018 and APAR for z/OS®, Java™
\Z//;:z P171019 applied OR IBM® 64-bit SDK Technology /usr/lpp/java/l7.1_64
for z/OS®, Java Technology Edition Edition, V8 SR6
V8, with the PTF for APAR P172601 (5655-DGH)
applied.
IBM® 64-bit SDK
2/0S IBM® 64-bit SDK for z/OS®, Java™ for z/OS®, Java™
G Technology Edition, V8 SR4 FP10 Technology /usr/lpp/java/l8.0_64
(5655-DGH) Edition, V8 SR6
(5655-DGH)

WebSphere® Liberty profile (z/OSMF V2R3 and later)

z/OSMF V2R3 uses the Liberty Profile that is supplied with z/OS, rather than its own copy of Liberty. The
WebSphere Liberty profile must be mounted on your z/OS system. The default mount point is:
/usr/1lpp/liberty_zos . To determine whether WebSphere® Liberty profile is mounted, check for the

existence of the mount point directory on your z/OS system.

If WebSphere® Liberty profile is mounted at a non-default location, you need to specify the location in the
IZUSVR1 started procedure on the keyword WLPDIR=. For details, see Appendix B. Modifying IZUSVR1
settings.

Note: Whenever you apply PTFs for z/OSMF, you might be prompted to install outstanding WebSphere
Liberty service. It is recommended that you do so to maintain z/OSMF functionality.

System settings
Ensure that the z/OS host system meets the following requirements:
e Port 443 (default port) is available for use.

e The system host name is unique and maps to the system on which z/OSMF Lite will be configured.

Otherwise, you might encounter errors later in the process. If you encounter errors, see Troubleshooting
problems for the corrective actions to take.

Web browser

For the best results with z/OSMF, use one of the following web browsers on your workstation:
* Microsoft Internet Explorer Version 11 or later
e Microsoft Edge (Windows 10)
* Mozilla Firefox ESR Version 52 or later.

To check your web browser's level, click About in the web browser.

Creating a z/OSMF nucleus on your system
The following system changes are described in this chapter:

e Running job IZUNUSEC to create security

Running job IZUMKEFS to create the z/OSMF user file system
Copying the IBM procedures into JES PROCLIB
Starting the z/OSMF server

e Accessing the z/JOSMF Welcome page

Mounting the z/OSMF user file system at IPL time

The following sample jobs that you might use are included in the package and available for download:

IZUAUTH
IZUICSEC
IZUNUSEC_V2R2
IZUNUSEC_V2R3
IZUPRMOO
IZURFSEC
IZUTSSEC
IZUWFSEC

Download sample jobs

Check out the video for a demo of the process:

Running job IZUNUSEC to create security

The security job IZUNUSEC contains a minimal set of RACF® commands for creating security profiles for the
z/OSMF nucleus. The profiles are used to protect the resources that are used by the z/JOSMF server, and to
grant users access to the z/OSMF core functions. IZUNUSEC is a simplified version of the sample job
IZUSEC, which is intended for a more complete installation of z/OSMF.

Note: If your implementation uses an external security manager other than RACF (for example, Top Secret or
ACF2), provide equivalent commands for your environment. For more information, see the following product
documentation:

e Configure z/OS Management Facility for Top Secret
e Configure z/OS Management Facility for ACF2

Before you begin

In most cases, you can run the IZUNUSEC security job without modification. To verify that the job is okay to
run as is, ask your security administrator to review the job and modify it as necessary for your security
environment. If security is not a concern for the host system, you can run the job without modification.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://docops.ca.com/ca-top-secret-for-z-os/16-0/en/installing/configure-z-os-management-facility-for-ca-top-secret
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html

Procedure

1. If you run z/OS V2R2 or V2R3, download job IZUNUSEC in the sample jobs package and upload this job
to z/OS. If you run z/OS V2R4, locate job IZUNUSEC at SYS1.SAMPLIB.

2. Review and edit the job, if necessary.
3. Submit IZUNUSEC as a batch job on your z/OS system.

4. Connect your user ID to IZUADMIN group.
i. Download job IZUAUTH in the sample jobs package and customize it.

ii. Replace the 'userid' with your z/OSMF user ID.
iii. Submit the job on your z/OS system.

Results

Ensure the IZUNUSEC job completes with return code 0000 .

To verify, check the results of the job execution in the job log. For example, you can use SDSF to examine the
job log:

1. In the SDSF primary option menu, select Option ST.
2. On the SDSF Status Display, enter S next to the job that you submitted.

3. Check the return code of the job. The job succeeds if '0000' is returned.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

Message IKJ56702I: Thejobis

INVALID data is submitted more You can ignore this message.
issued than once.
Your user ID lacks Contact your security admin to run IZUNUSEC. If you are

Job fails with an)))
o superuser using RACF®, select a user ID with SPECIAL attribute
authorization error.) . .
authority. which can issue all RACF® commands.

https://docs.zowe.org/stable/zosmf_lite_samples.zip

Symptom Cause Resolution

Your installation

Job fails with an uses the RACF)

o See Troubleshooting problems.
authorization error. PROTECT-ALL

option.

ADDGROUP and The automatic GID
ADDUSER and UID Define SHARED.IDS and BPX.NEXT.USER profiles to
commands are not assignment is enable the use of AUTOUID and AUTOGID.
executed. required.

Running job IZUMKFS to create the z/JOSMF user file system

The job IZUMKEFS initializes the z/OSMF user file system, which contains configuration settings and
persistence information for z/OSMF.

The job mounts the file system. On a z/OS V2R3 system with the PTF for APAR PI192211 installed, the job
uses mount point /global/zosmf . Otherwise, for an earlier system, the job mounts the file system at

mount point /var/zosmf .

Before you begin

To perform this step, you need a user ID with "superuser" authority on the z/OS host system. For more
information about how to define a user with superuser authority, see the publication z/OS UNIX System
Services.

Procedure
1. In the system library SYS1.SAMPLIB , locate job IZUMKFS.
2. Copy the job.
3. Review and edit the job:

o Modify the job information so that the job can run on your system.

o You must specify a volume serial (VOLSER) to be used for allocating a data set for the z/OSMF data
directory.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

4. Submit IZUMKEFS as a batch job on your z/OS system.

Results

The z/OSMF file system is allocated, formatted, and mounted, and the necessary directories are created.
To verify if the file system is allocated, formatted, locate the following messages in IZUMKEFS job output.

Sample output:

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

o Your user ID lacks For more information about how to define a user with
Job fails with

superuser superuser authority, see the publication z/OS UNIX System
FSM error.

authority. Services.

Job fails with an
o Job statement .
authorization See Troubleshooting problems.
errors.
error.

Copying the IBM procedures into JES PROCLIB

Copy the z/OSMF started procedures and logon procedure from SYS1.PROCLIB into your JES
concatenation. Use $D PROCLIB command to display your JES2 PROCLIB definitions.

Before you begin

Locate the IBM procedures. IBM supplies procedures for zZOSMF in your z/OS order:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

e ServerPac and CustomPac orders: IBM supplies the z/OSMF procedures in the SMP/E managed proclib
data set. In ServerPac and SystemPac, the default name for the data set is SYS1.IBM.PROCLIB.

e CBPDO orders: For a CBPDO order, the SMP/E-managed proclib data set is named as SYS1.PROCLIB.
* Application Development CD.

Procedure

Use ISPF option 3.3 or 3.4 to copy the procedures from SYS1.PROCLIB into your JES concatenation.
e |[ZUSVR1
e [ZUANGI1

* |ZUFPROC

Results

The procedures now reside in your JES PROCLIB.

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Not authorized to Your user ID doesn't have the

. o . Contact your security administrator.
copy into PROCLIB. permission to modify PROCLIB.

Abend code B37 or Use IEBCOPY utility to compress
The data set runs out of space.)
E37. PROCLIB dataset before you copy it.

Starting the z/OSMF server

z/OSMF processing is managed through the z/OSMF server, which runs as the started tasks IZUANG1 and
IZUSVR1. z/OSMF is started with the START command.

Before you begin

Ensure that you have access to the operations console and can enter the START command.
Procedure

In the operations console, enter the START commands sequentially:

Note: The z/OSMF angel (IZUANG1) must be started before the z/JOSMF server (IZUSVR1).

You must enter these commands manually at subsequent IPLs. If necessary, you can stop z/OSMF
processing by entering the STOP command for each of the started tasks IZUANG1 and IZUSVR1.

Note: z/OSMF offers an autostart function, which you can configure to have the z/OSMF server started
automatically. For more information about the autostart capability, see z/OSMF Configuration Guide.

Results

When the z/OSMF server is initialized, you can see the following messages displayed in the operations
console:

Accessing the zJOSMF Welcome page

At the end of the z/OSMF configuration process, you can verify the results of your work by opening a web
browser to the Welcome page.

Before you begin

To find the URL of the Welcome page, look for message IZUG349I in the z/OSMF server job log.

Procedure

1. Open a web browser to the z/OSMF Welcome page. The URL for the Welcome page has the following
format: https://hostname:port/zosmf/

Where:
o hostname is the host name or IP address of the system in which z/OSMF is installed.

o portis the secure port for the z/JOSMF configuration. If you specified a secure port for SSL
encrypted traffic during the configuration process through parmlib statement HTTP_SSL_PORT,

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

port is required to log in. Otherwise, it is assumed that you use the default port 443.

2. In the z/OS USER ID field on the Welcome page, enter the z/OS user ID that you use to configure
z/OSMF.

3. In the z/OS PASSWORD field, enter the password or pass phrase that is associated with the z/OS user
ID.

4. Select the style of Ul for zJOSMF. To use the desktop interface, select this option. Otherwise, leave this
option unselected to use the tree view Ul.

5. Click Log In.

Results

If the user ID and password or pass phrase are valid, you are authenticated to z/OSMF. The Welcome page
of IBM z/OS Management Facility tab opens in the main area. At the top right of the screen, Welcome
<your_user_ID> is displayed. In the Ul, only the options you are allowed to use are displayed.

You have successfully configured the z/OSMF nucleus.

Common errors

The following errors might occur during this step:

Symptom Cause Resolution
The SSL handshake was
z/OSMF welcome page does not load not successful. This See Certificate error in the
in your web browser. problem can be related to Mozilla Firefox browser.

the browser certificate.

To log into z/OSMF, enter a valid z/OS)
The user ID is not

user ID and password. Your account Connect your user ID to the
) connected to the

might be locked after too many IZUADMIN group.

. . IZUADMIN group.

incorrect log-in attempts.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm

Symptom Cause Resolution

To log into z/OSMF, enter a valid z/OS Log on to TSO using your z/OS

user ID and password. Your account i) User ID and password, you will
) The password is expired.

might be locked after too many be asked to change your

incorrect log-in attempts. password if it's expired.

Mounting the z/OSMF user file system at IPL time

Previously, in Running job IZUMKEFS to create the z/OSMF user file system, you ran job IZUMKEFS to create
and mount the z/OSMF user file system. Now you should ensure that the z/OSMF user file system is
mounted automatically for subsequent IPLs. To do so, update the BPXPRMxx parmlib member on your z/OS
system.

Before you begin

By default, the z/OSMF file system uses the name 1ZU.SIZUUSRD, and is mounted in read/write mode. It is
recommended that this file system is mounted automatically at IPL time.

If you do not know which BPXPRMxx member is active, follow these steps to find out:

1. In the operations console, enter the following command to see which parmlib members are included in

the parmlib concatenation on your system:
D PARMLIB
2. Make a note of the BPXPRMxx member suffixes that you see.
3. To determine which BPXPRMxx member takes precedence, enter the following command:
D OMVS
The output of this command should be similar to the following:

In this example, the member BPXPRMST takes precedence. If BPXPRMST is not present in the
concatenation, member BPXPRM3T is used.

Procedure

Add a MOUNT command for the z/OSMF user file system to your currently active BPXPRMxx parmlib
member. For example:

On a z/OS V2R3 system with the PTF for APAR PI192211 installed:

On a z/OS V2R2 or V2R3 system without PTF for APAR P192211 installed:

Results

The BPXPRMxx member is updated. At the next system IPL, the following message is issued to indicate that
the z/OSMF file system is mounted automatically.

Adding the required REST services
You must enable a set of zZOSMF REST services for the Zowe framework.

The following system changes are described in this topic:

Enabling the z/OSMF JOB REST services

Enabling the TSO REST services

Enabling the z/OSMF data set and file REST services

Enabling the z/OSMF Workflow REST services and Workflows task Ul

Enabling the zJOSMF JOB REST services
The Zowe framework requires that you enable the zJOSMF JOB REST services, as described in this topic.
Procedure

None

Results

To verify if the zJOSMF JOB REST services are enabled, open a web browser to our z/OS system (host name
and port) and add the following REST call to the URL:

GET /zosmf/restjobs/jobs

The result is a list of the jobs that are owned by your user ID. For more information about the z/OSMF JOB
REST services, see z/OSMF Programming Guide.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm

Common errors

Review the following messages and the corresponding resolutions as needed:
Symptom 1

401 Unauthorized

Cause

The user ID is not connected to IZUADMIN or [IZUUSER.

Resolution

Connect your user ID to IZUADMIN or IZUUSER.

Symptom 2

HTTP/1.1 500 Internal Server Error {"rc":16,"reason":-1,"stack":"JesException: CATEGORY_CIM rc=16
reason=-1 cause=com.ibm.zoszmf.util.eis.EisConnectionException: IZUG911l: Connection to
\"http:\/\/null:5988\" cannot be established, or was lost and cannot be re-established using protocol
\"CIM\"......Caused by: WBEMException: CIM_ERR_FAILED (JNI Exception type
CannotConnectException:\nCannot connect to local CIM server. Connection failed.)

Cause

For JES2, you may have performed one of the following "Modify" operations: Hold a job, Release a job,
Change the job class, Cancel a job, Delete a job (Cancel a job and purge its output), or you are running JES3
without configuring CIM Server.

Resolution

If you are running JES2, you can use synchronous support for job modify operations which does not
required CIM. If you are running JES3, follow the CIM setup instructions to configure CIM on your system.

Enabling the TSO REST services

The Zowe framework requires that you enable the TSO REST services, as described in this topic.

Before you begin

Ensure that the common event adapter component (CEA) of z/OS is running in full function mode.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm#izuhpinfo_api_restjobs__RequestingSynchronousProcessing
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm

1. To check if the CEA address space is active, enter the following command:
D A,CEA

2. If not, start CEA in full function mode. For detailed instructions, see System prerequisites for the CEA
TSO/E address space services.

3. To verify that CEA is running in full function mode, enter the following command:

F CEA,D

The output should look like the following:

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUTSSEC in the sample jobs package and upload this
Job to z/OS. If you run z/OS V2R4, locate job IZUTSSEC at SYS1.SAMPLIB .

2. Review and edit job IZUTSSEC before you submit. You can review the IZUTSSEC section below for more
details.

3. Submit IZUTSSEC as a batch job on your z/OS system.

IZUTSSEC

IBM provides a set of jobs in SYS1.SAMPLIB with sample RACF commands to help with your z/OSMF
configuration and its prerequisites. The IZUTSSEC job represents the authorizations that are needed for the
z/OSMF TSOJE address space service. Your security administrator can edit and run the job. Generally, your
z/OSMF user ID requires the same authorizations for using the TSO/E address space services as when you
perform these operations through a TSO/E session on the z/OS system. For example, to start an application
in a TSO/E address space requires that your user ID be authorized to operate that application. In addition, to
use TSOJE address space services, you must have:

e READ access to the account resource in class ACCTNUM, where account is the value specified in the
COMMON_TSO ACCT option in parmlib.
e READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH.

e READ access to the proc resource in class TSOPROC, where proc is the value specified with the
COMMON_TSO PROC option in parmlib.

e READ access to the <SAF_PREFIX>*izuUsers profile in the EJBROLE class. Or, at a minimum, READ
access to the <SAF_PREFIX>.lzuManagementFacilityTsoServices.izuUsers resource name in the
EJBROLE class. You must also ensure that the zJOSMF started task user ID, which is IZUSVR by default,

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm
https://docs.zowe.org/stable/zosmf_lite_samples.zip

has READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH. To create a TSO/E
address space on a remote system, you require the following authorizations:

* You must be authorized to the SAF resource profile that controls the ability to send data to the remote
system (systemname), as indicated: CEA.CEATSO.FLOW.systemname

» To flow data between different systems in the sysplex, you must be authorized to do so by your external
security manager, such as a RACF database with sysplex-wide scope. For example, to flow data
between System A and System B, you must be permitted to the following resource profiles:

o CEA.CEATSO.FLOW.SYSTEMA

o CEA.CEATSO.FLOW.SYSTEMB

Results

The IZUTSSEC job should complete with return code 0000.

Enabling the z/JOSMF data set and file REST services

The Zowe framework requires that you enable the z/JOSMF data set and file REST services.

Before you begin

1. Ensure that the message queue size is set to a large enough value. It is recommended that you specify
an IPCMSGQBYTES value of at least 20971520 (20M) in BPXPRMxx.

Issue command D OMVS, 0 to see the current value of IPCMSGQBYTES, if it is not large enough, use
the SETOMVS command to set a large value. To set this value dynamically, you can enter the following

operator command:
SETOMVS IPCMSGQBYTES=20971520
2. Ensure that the TSO REST services are enabled.
3. Ensure that IZUFPROC is in your JES concatenation.

4. Ensure that your user ID has a TSO segment defined. To do so, enter the following command from
TSO/E command prompt:

LU userid TSO

Where userid is your z/OS user ID.

The output from this command must include the section called TSO information, as shown in the following

example:

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZURFSEC in the sample jobs package and upload it to
z/OS. If you run z/OS V2R4, locate job IZURFSEC at SYS1.SAMPLIB .

2. Copy the job.
3. Examine the contents of the job.
4. Modify the contents as needed so that the job will run on your system.

5. From the TSO/E command line, run the IZURFSEC job.

Results

Ensure that the IZURFSEC job completes with return code 0000 .

To verify if this setup is complete, try issuing a REST service. See the example in List data sets in the zJOSMF

programming guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution
The .
REST API doesn't return expected Ensure that the message queue sizeis setto a
message
data with rc=12, rsn=3, message: g. large enough value. It is recommended that you
ueue size
message queue size "SIZE" is less ? CEA | specify an IPCMSGQBYTES value of at least
or is
than minimum: 20M 20971520 (20M) in BPXPRMX.
too small.

Enabling the zJOSMF Workflow REST services and Workflows task Ul

The Zowe framework requires that you enable the zJOSMF Workflow REST services and Workflows task UI.

Before you begin

1. Ensure that the JOB REST services are enabled.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_GetListDataSets.htm

2. Ensure that the TSO REST services are enabled.

3. Ensure that the dataset and file REST services are enabled.

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUWFSEC in the sample jobs package and upload this
job to z/OS. If you run z/OS V2R4, locate job IZUWFSEC at SYS1.SAMPLIB .

2. Copy the job.
3. Examine the contents of the job.
4. Modify the contents as needed so that the job will run on your system.

5. From the TSO/E command line, run the IZUWFSEC job.

Results

Ensure the IZUWFSEC job completes with return code 0000 .

To verify, log on to z/OSMF (or refresh it) and verify that the Workflows task appears in the z/OSMF UI.
At this point, you have completed the setup of z/OSMF Lite.

Optionally, you can add more users to z/OSMF, as described in Appendix C. Adding more users to z/OSMF.

Troubleshooting problems

This section provides tips and techniques for troubleshooting problems you might encounter when creating
a z/OSMF Lite configuration. For other types of problems that might occur, see z/ZOSMF Configuration Guide.

Common problems and scenarios

This section discusses troubleshooting topics, procedures, and tools for recovering from a set of known

issues.
System setup requirements not met
This document assumes that the following is true of the z/OS host system:

e Port 443 is available for use. To check this, issue either TSO command NETSTAT SOCKET or TSO
command NETSTAT BYTE to determine if the port is being used.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

e The system host name is unique and maps to the system on which z/OSMF Lite is being installed. To
retrieve this value, enter either "hostname" z/OS UNIX command or TSO command "HOMETEST". If
your system uses another method of assigning the system name, such as a multi-home stack, dynamic
VIPA, or System Director, see z/OSMF Configuration Guide.

* The global mount point exists. On a z/OS 2.3 system, the system includes this directory by default. On a
z/OS 2.2 system, you must create the global directory at the following location: /global/zosmf/ .

If you find that a different value is used on your z/OS system, you can edit the IZUPRMxx parmlib member to
specify the correct setting. For details, see Appendix A. Creating an IZUPRMxx parmlib member.

Tools and techniques for troubleshooting

For information about working with z/OSMF log files, see z/OSMF Configuration Guide.
Common messages
If you see above error messages, check if your [ZUANGO procedure is up to date.

For descriptions of all the z/OSMF messages, see z/OSMF messages in IBM Knowledge Center.

Appendix A. Creating an IZUPRMxx parmlib member

If zZOSMF requires customization, you can modify the applicable settings by using the IZUPRMxx parmlib
member. To see a sample member, locate the IZUPRMOO member in the SYS1.SAMPLIB data set. IZUPRMOO
contains settings that match the z/OSMF defaults.

Using IZUPRMOO as a model, you can create a customized IZUPRMxx parmlib member for your environment
and copy it to SYS1.PARMLIB to override the defaults.

The following IZUPRMxx settings are required for the z/OSMF nucleus:
e HOSTNAME
e HTTP_SSL_PORT
* JAVA_HOME.

The following setting is needed for the TSO/E REST services:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zosmfmessages.help.doc/izuG00hpMessages.html

* COMMON_TSO ACCT(IZUACCT) REGION(50000) PROC(IZUFPROC)

Descriptions of these settings are provided in the table below. For complete details about the IZUPRMxx
settings and the proper syntax for updating the member, see z/OSMF Configuration Guide.

If you change values in the IZUPRMxx member, you might need to customize the started procedure
IZUSVR1, accordingly. For details, see Appendix B. Modifying IZUSVR1 settings.

To create an IZUPRMxx parmlib member, follow these steps:
1. Copy the sample parmlib member into the desired parmlib data set with the desired suffix.
2. Update the parmlib member as needed.

3. Specify the IZUPRMxx parmlib member or members that you want the system to use on the IZU
parameter of IEASYSxx. Or, code a value for IZUPRM= in the IZUSVR1 started procedure. If you specify
both IZU=in IEASYSxx and IZUPARM= in IZUSVR1, the system uses the IZUPRM= value you specify in
the started procedure.

Setting Purpose Rules Default

Specifies the host name, as defined by

DNS, where the z/OSMF server is

located. To use the local host name,

enter asterisk (*), which is equivalent Must be a

to \@HOSTNAME from previous valid TCP/IP
HOSTNAME (hostname) releases. If you plan to use z/OSMFina HOSTNAME Default: *

multisystem sysplex, IBM recommends or an asterisk

using a dynamic virtual IP address (*).

(DVIPA) that resolves to the correct IP

address if the zJOSMF server is moved

to a different system.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

Setting

HTTP_SSL_PORT (nnn)

COMMON_TSO
ACCT (account-
number)
REGION(region-size)
PROC(proc-name)

USER_DIR=filepath

Purpose

Identifies the port number that is
associated with the z/OSMF server.
This port is used for SSL encrypted

traffic from your z/OSMF configuration.

The default value, 443, follows the
Internet Engineering Task Force (IETF)
standard. Note: By default, the
z/OSMF server uses the SSL protocol
SSL_TLSv2 for secure TCP/IP
communications. As a result, the
server can accept incoming
connections that use SSL V3.0 and the
TLS 1.0, 1.1 and 1.2 protocols.

Specifies values for the TSO/E logon
procedure that is used internally for

various z/OSMF activities and by the
Workflows task.

z/OSMF data directory path. By
default, the z/OSMF data directory is
located in /global/zosmf . If you
want to use a different path for the
z/OSMF data directory, specify that

value here, for example:

USER_DIR= /the/new/config/dir .

Rules

Must be a
valid TCP/IP
port number.
Value range:
1-65535
(upto b5
digits)

The valid
ranges for
each value
are
described in
z/OSMF
Configuration
Guide.

Must be a
valid z/OS
UNIX path
name.

Appendix B. Modifying IZUSVR1 settings

You might need to customize the started procedure IZUSVR1 for z/OSMF Lite.

Default

Default: 443

Default: 443
ACCT(IZUACCT)
REGION(50000)
PROC(IZUFPROC)

Default:
/global/zosmf,

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

To modify the IZUSVR1 settings, follow these steps:
1. Make a copy
2. Apply your changes

3. Store your copy in PROCLIB.

Setting Purpose

WLPDIR='"directory-

WebSphere Liberty server code path.
path'

Rules

The
directory
path
must: Be
a valid
z/OS
UNIX
path
name Be
a full or
absolute
path
name Be
enclosed
in
quotation
marks
Begin
with a
forward
slash

(‘7).

Default

Default:
/usr/lpp/zosmf/libet

Setting Purpose

z/OSMF data directory path. By
default, the z/OSMF data directory is
located in /global/zosmf. If you want to

USER_DIR=filepath use a different path for the z/OSMF
data directory, specify that value here,
for example:

USER_DIR= /the/new/config/dir .

Rules

Must be
avalid
z/OS
UNIX
path

name.

Appendix C. Adding more users to z/OSMF

Default

Default: /global/zosmf

Your security administrator can authorize more users to z/OSMF. Simply connect the required user IDs to the

z/OSMF administrator group (IZUADMIN). This group is permitted to a default set of zZOSMF resources

(tasks and services). For the specific group permissions, see Appendix A in z/OSMF Configuration Guide.

You can create more user groups as needed, for example, one group per z/OSMF task.

Before you Begin

Collect the z/OS user IDs that you want to add.

Procedure

1. On an RACF system, enter the CONNECT command for the user IDs to be granted authorization to

z/OSMF resources:

CONNECT userid GROUP(IZUADMIN)

Results

The user IDs can now access z/OSMF.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

Version: v2.4.x LTS

Installing Zowe runtime from a convenience
build

You install the Zowe™ convenience build by obtaining a PAX file and using this to create the Zowe runtime

environment.

Introduction

The Zowe installation file for Zowe z/OS components is distributed as a PAX file that contains the runtimes
and the scripts to install and launch the z/OS runtime. You must obtain the PAX file and transfer it to z/OS
first. Then, to install, configure and start Zowe, you use the zwe command. This command defines help
messages, logging options, and more. For details about how to use this command, see the ZWE Server
Command Reference.

The configuration data that is read by the zwe command are stored in a YAML configuration file named

zowe.yaml . You modify the zowe.yaml file based on your environment.

Complete the following steps to install the Zowe runtime.

Step 1: Obtain the convenience build

To download the PAX file, open your web browser on the Zowe Download website, navigate to Zowe V2
Preview -> Convenience build section, and select the button to download the v2 convenience build.

Step 2: Transfer the convenience build to USS and expand
it

After you download the PAX file, you can transfer it to z/OS and expand its contents.

1. Open a terminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory
where you downloaded the Zowe PAX file.

2. Connect to z/OS using SFTP. Issue the following command:

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe
https://www.zowe.org/download.html

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:
. Navigate to the target directory that you want to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter the UNIX file system. The following
commands are useful:

o To see what directory you are in, type pwd .
o To switch directory, type cd .
o To list the contents of a directory, type 1s .

o To create a directory, type mkdir .

. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:
Where zowe-V.v.p is a variable that indicates the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with
1 to have them issued against your desktop. To list the contents of a directory on your desktop, type

1ls where 1s lists contents of a directory on z/OS.

After the PAX file has sucessfully transferred, exit your sftp or ftp session.

. Open a USS shell to expand the PAX file. This can either be an ssh terminal, OMVS, iShell, or any other
z/OS unix system services command environment.

. Expand the PAX file by issuing the following command in the USS shell.

Where zowe-V.v.p is a variable that indicates the name of the PAX file you downloaded. When extracting
the Zowe convenience build, you must always include the —ppx argument that preserves extended

attributes.
This will expand to a file structure similar to the following one.

This is the Zowe runtime directory and is referred to as <RUNTIME_DIR> throughout this

documentation.

Note: Zowe version 1 had a script zowe-install.sh that created a separate Zowe runtime directory
from the expanded contents of the Zowe PAX file. Zowe v2 no longer has this step. In Zowe v2, the
contents of the expanded Zowe PAX file are the Zowe runtime directory.

Step 3: (Optional) Add the zwe command to your PATH

The zwe command is provided in the <RUNTIME_DIR>/bin directory. You can optionally add this Zowe
bin directory to your PATH environment variable so you can execute the zwe command without having to

fully qualify its location. To update your PATH , run the following command:

<RUNTIME_DIR> should be replaced with your real Zowe runtime directory path. This will update the

PATH for the current shell. To make this update persistent, you can add the line to your ~/.profile file,
orthe ~/.bashProfile fileif you are using a bash shell. To make this update system wide, you can
update the /etc/.profile file. Once the PATH is updated, you can execute the zwe command from
any USS directory. For the remainder of the documentation when zwe command is referenced, it is

assumed that it has been added to your PATH .

The zwe command has built in help that can be retrieved with the —h suffix. For example, type zwe -h

to display all of the supported commands. These are broken down into a number of sub-commands.

Step 4: Copy the zowe.yaml configuration file to preferred
location

Copy the template file <RUNTIME_DIR>/example-zowe.yaml file to a new location, such as
/var/1lpp/zowe/zowe.yaml or your home directory ~/.zowe.yaml . This will become your
configuration file that contains data used by the zwe command at a number of parts of the lifecycle of

configuring and starting Zowe. You will need to modify the zowe.yaml file based on your environment.

When you execute the zwe command, the —c argument is used to pass the location of a zowe.yaml

file.

TIP

To avoid passing ——config or —c toevery zwe commands, you can define
ZWE_CLI_PARAMETER_CONFIG environment variable points to location of zowe.yaml.

For example, after defining

, you can simply type zwe install instead of fullcommand zwe install -c

/path/to/my/zowe.yaml .

Step 5: Install the MVS data sets

After you extract the Zowe convenience build, you can runthe zwe install command to install MVS

data sets.

About the MVS data sets

Zowe includes a number of files that are stored in the following three data sets. See the following table for

the storage requirements.

Library
DDNAME

SZWESAMP

SZWEAUTH

SZWEEXEC

The SZWESAMP data set contains the following members.

Member
name

ZWESECUR

ZWENOSEC

ZWEKRING

ZWENOKYR

Target
Member Type
Volume
Samples ANY
Zowe APF Load
ANY
Modules
CLIST co
o OR ANY
utilities

Type

Org

PDSE

PDSE

PDSE

Purpose

RECFM

FB

FB

LRECL

80

80

No.

3390
Trks

15

15

15

JCL member to configure z/OS user IDs and permissions required to run Zowe

No.
of
DIR
Blks

N/A

JCL member to undo the configuration steps performed in ZWESECUR and revert z/OS

environment changes.

JCL member to configure a z/OS keyring containing the Zowe certificate

JCL member to undo the configuration steps performed in ZWEKRING

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install

Member
name

ZWESLSTC

ZWEXMSTC

ZWESIPOO

ZWESASTC

ZWESIPRG

ZWESISCH

ZWECSVSM

Purpose

JCL to start Zowe

JCL to start the Zowe cross memory server

Parmlib member for the cross memory server

Started task JCL for the cross memory Auxiliary server

Console commands to APF authorize the cross memory server load library

PPT entries required by Cross memory server and its Auxiliary address spaces to run in
Key(4)

JCL Member to create the VSAM data set for the caching service

The SZWEAUTH data set is a load library containing the following members.

Member
name

ZWELNCH

ZWESISO1

ZWESAUX

Purpose

The Zowe launcher that controls the startup, restart and shutdown of Zowe's address
spaces

Load module for the cross memory server

Load module for the cross memory server's auxiliary address space

The SZWEEXEC data set contains few utilities used by Zowe.

Procedure

The high level qualifer (or HLQ) for these data sets is specified in the zowe.yaml section below. Ensure

that you update the zowe.setup.dataset.prefix value to match your system.

To create and install the MVS data sets, use the command zwe install.

1. In a USS shell, execute the command zwe install -c /path/to/zowe.yaml . This creates the
three data sets and copy across their content.
2. If the data sets already exist, specify ——allow-overwritten .

3. To see the full list of parameters, execute the command zwe install -h.

A sample run of the command is shown below using default values.

Next steps

You successfully installed Zowe from the convenience build! However, before you start Zowe, you must
complete several required configurations. Next, go to Initialize the z/OS system and permissions to initialize

your z/OS system for Zowe first.

https://docs.zowe.org/stable/user-guide/initialize-zos-system

Version: v2.4.x LTS

Installing Zowe SMPJE

Contents

Introduction
o Zowe description

o Zowe FMIDs

e Program materials

o Basic machine-readable material
o Program publications

o Program source materials

[¢]

Publications useful during installation

e Program support
o Statement of support procedures

Program and service level information
o Program level information

o Service level information

Installation requirements and considerations
o Driving system requirements
= Driving system machine requirements

= Driving system programming requirements

o Target system requirements
= Target system machine requirements

= Target system programming requirements
= DASD storage requirements
o FMIDs deleted

 |nstallation instructions
o SMPJE considerations for installing Zowe

o SMPJE options subentry values

o Qverview of the installation steps

o Download the Zowe SMP/E package

o Allocate file system to hold the download package

o Upload the download package to the host

o Extract and expand the compressed SMPMCS and RELFILEs
= GIMUNZIP

o Sample installation jobs

o Create SMPJE environment (optional)

o Perform SMP/E RECEIVE

o Allocate SMPJE Target and Distributions Libraries
o Allocate, create and mount ZSF Files (Optional)
o Allocate z/OS UNIX Paths

o Create DDDEF Entries

o Perform SMP/E APPLY

o Perform SMP/E ACCEPT

o Run REPORT CROSSZONE

o Cleaning up obsolete data sets, paths, and DDDEFs

e Activating Zowe
o File system execution

e Zowe customization

Introduction

This program directory is intended for system programmers who are responsible for program installation and
maintenance. It contains information about the material and procedures associated with the installation of
Zowe Open Source Project (Base). This publication refers to Zowe Open Source Project (Base) as Zowe.

The Program Directory contains the following sections:

* Program Materials identifies the basic program materials and documentation for Zowe.
e Program Support describes the support available for Zowe.

e Program and Service Level Information lists the APARs (program level) and PTFs (service level) that
have been incorporated into Zowe.

* Installation Requirements and Considerations identifies the resources and considerations that are
required for installing and using Zowe.

 Installation Instructions provides detailed installation instructions for Zowe. It also describes the
procedures for activating the functions of Zowe, or refers to appropriate publications.

Zowe description

Zowe™ is an open source project created to host technologies that benefit the Z platform. It is a sub-project
of Open Mainframe Project which is part of the Linux Foundation. More information about Zowe is available
at https://zowe.org.

Zowe FMIDs

Zowe consists of the following FMIDs:

* AZWEO002

Program materials

Basic Machine-Readable Materials are materials that are supplied under the base license and are required
for the use of the product.

Basic machine-readable material

The distribution medium for this program is via downloadable files. This program is in SMP/E RELFILE format
and is installed using SMPJE. See Installation instructions for more information about how to install the

program.

Program source materials

No program source materials or viewable program listings are provided for Zowe in the SMPJE installation
package. However, program source materials can be downloaded from the Zowe GitHub repositories at
https://github.com/zowe/.

Publications useful during installation
Publications listed below are helpful during the installation of Zowe.
Publication Title Form Number
IBM SMPJE for z/OS User's Guide SA23-2277

IBM SMPJE for z/OS Commands SA23-2275

https://www.openmainframeproject.org/projects
https://zowe.org/
https://github.com/zowe/
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232277/$file/gim3000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232275/$file/gim1000_v2r3.pdf

Publication Title Form Number
IBM SMPJE for z/OS Reference SA23-2276

IBM SMPJE for z/OS Messages, Codes, and Diagnosis GA32-0883

These and other publications can be obtained from https://www.ibm.com/shop/publications/order.

Program support
This section describes the support available for Zowe.

Because this is an alpha release of the Zowe FMID package for early testing and adoption, no formal support
is offered. Support is available through the Zowe community. See Community Engagement for details. Slack
is the preferred interaction channel.

Additional support may be available through other entities outside of the Open Mainframe Project and Linux
Foundation which offers no warranty and provides the package under the terms of the EPL v2.0 license.

Statement of support procedures

Report any problems which you feel might be an error in the product materials to the Zowe community via
the Zowe GitHub community repo at https://github.com/zowe/community/issues/new/choose. You may be
asked to gather and submit additional diagnostics to assist the Zowe Community for analysis and resolution.

Program and service level information

This section identifies the program and relevant service levels of Zowe. The program level refers to the APAR
fixes that have been incorporated into the program. The service level refers to the PTFs that have been

incorporated into the program.

Program level information

All issues of previous releases of Zowe that were resolved before August 2019 have been incorporated into
this packaging of Zowe.

Service level information

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232276/$file/gim2000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3ga320883/$file/gim0000_v2r3.pdf
https://www.ibm.com/shop/publications/order
https://github.com/zowe/community/blob/master/README.md#communication-channels
https://github.com/zowe/community/issues/new/choose

The Zowe SMPJE package is a distribution of Zowe version 2.0.0 with an FMID of AZWEO002.

Subsequent releases of the Zowe z/OS components are delivered as rollup PTFs on zowe.org.

Installation requirements and considerations

The following sections identify the system requirements for installing and activating Zowe. The following

terminology is used:

* Driving System: the system on which SMPJE is executed to install the program.

» Target system: the system on which the program is configured and run.
Use separate driving and target systems in the following situations:

* When you install a new level of a product that is already installed, the new level of the product will
replace the old one. By installing the new level onto a separate target system, you can test the new level
and keep the old one in production at the same time.

e When you install a product that shares libraries or load modules with other products, the installation can
disrupt the other products. By installing the product onto a separate target system, you can assess
these impacts without disrupting your production system.

Driving system requirements

This section describes the environment of the driving system required to install Zowe.

Driving system machine requirements

The driving system can be run in any hardware environment that supports the required software.

Driving system programming requirements

Program Product Minimum Minimum Service Level will Included in the
Number Name VRM satisfy these APARs shipped product?
V2.2.0 or
5650-Z0S z/OS N/A No
later

Notes:

https://www.zowe.org/download.html

e SMPJE is a requirement for Installation and is an element of z/OS but can also be ordered as a separate
product, 5655-G44, minimally V03.06.00.

 Installation might require migration to a new z/OS release to be service supported. See https://www-
01.ibm.com/software/support/lifecycle/index_z.html.

Zowe is installed into a file system, either HFS or zFS. Before installing Zowe, you must ensure that the target
system file system data sets are available for processing on the driving system. OMVS must be active on the
driving system and the target system file data sets must be mounted on the driving system.

If you plan to install Zowe in a zFS file system, this requires that zFS be active on the driving system.
Information on activating and using zFS can be found in z/OS Distributed File Service zSeries File System
Administration (SC24-5989).

Target system requirements

This section describes the environment of the target system required to install and use Zowe.
Zowe installs in the z/OS (Z038) SREL.

Target system machine requirements

The target system can run in any hardware environment that supports the required software.
Target system programming requirements

Installation requisites

Installation requisites identify products that are required and must be present on the system or products that
are not required but should be present on the system for the successful installation of Zowe.

Mandatory installation requisites identify products that are required on the system for the successful
installation of Zowe. These products are specified as PREs or REQs.

Zowe has no mandatory installation requisites.

Conditional installation requisites identify products that are not required for successful installation of Zowe
but can resolve such things as certain warning messages at installation time. These products are specified
as IF REQs.

Zowe has no conditional installation requisites.

https://www-01.ibm.com/software/support/lifecycle/index_z.html
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3SC236887/$file/ioea700_v2r3.pdf

Operational requisites

Operational requisites are products that are required and must be present on the system, or, products that
are not required but should be present on the system for Zowe to operate all or part of its functions.

Mandatory operational requisites identify products that are required for this product to operate its basic
functions. The following table lists the target system mandatory operational requisites for Zowe.

Program Number Product Name and Minimum VRM/Service Level
5650-Z0S IBM z/OS Management Facility V2.2.0 or higher
5655-SDK IBM SDK for Node.js - z/OS V12 or higher

5655-DGH IBM 64-bit SDK for z/OS Java Technology Edition V8.0.0

Conditional operational requisites identify products that are not required for Zowe to operate its basic
functions but are required at run time for Zowe to operate specific functions. These products are specified
as IF REQs. Zowe has no conditional operational requisites.

Toleration/coexistence requisites

Toleration/coexistence requisites identify products that must be present on sharing systems. These systems
can be other systems in a multi-system environment (not necessarily Parallel Sysplex ™), a shared DASD
environment (such as test and production), or systems that reuse the same DASD environment at different
time intervals.

Zowe has no toleration/coexistence requisites.
Incompatibility (negative) requisites
Negative requisites identify products that must not be installed on the same system as Zowe.

Zowe has no negative requisites.

DASD storage requirements

Zowe libraries can reside on all supported DASD types.

Total DASD space required by Zowe

Library Total Space Required in

Description
Type 3390 Trks
Target 45 Tracks /
Distribution 12045 Tracks /
File
21000 Tracks /
System(s)
Web These are temporary data sets, which can be removed
38666 Tracks .
Download after the SMPJE install.
Notes:

1. For non-RECFM U data sets, we recommend using system-determined block sizes for efficient DASD
utilization. For RECFM U data sets, we recommend using a block size of 32760, which is most efficient
from the performance and DASD utilization perspective.

2. Abbreviations used for data set types are shown as follows.

o U - Unique data set, allocated by this product and used by only this product. This table provides all
the required information to determine the correct storage for this data set. You do not need to refer
to other tables or program directories for the data set size.

o S - Shared data set, allocated by this product and used by this product and other products. To
determine the correct storage needed for this data set, add the storage size given in this table to
those given in other tables (perhaps in other program directories). If the data set already exists, it
must have enough free space to accommodate the storage size given in this table.

o E - Existing shared data set, used by this product and other products. This data set is not allocated
by this product. To determine the correct storage for this data set, add the storage size given in
this table to those given in other tables (perhaps in other program directories). If the data set
already exists, it must have enough free space to accommodate the storage size given in this table.

If you currently have a previous release of Zowe installed in these libraries, the installation of this
release will delete the old release and reclaim the space that was used by the old release and any
service that had been installed. You can determine whether these libraries have enough space by

deleting the old release with a dummy function, compressing the libraries, and comparing the
space requirements with the free space in the libraries.

For more information about the names and sizes of the required data sets, see Allocate SMP/E
target and distribution libraries.

3. Abbreviations used for the file system path type are as follows.

o N - New path, created by this product.
o X - Path created by this product, but might already exist from a previous release.

o P - Previously existing path, created by another product.

4. All target and distribution libraries listed have the following attributes:

o The default name of the data set can be changed.
o The default block size of the data set can be changed.
o The data set can be merged with another data set that has equivalent characteristics.

o The data set can be either a PDS or a PDSE, with some exceptions. If the value in the "ORG"
column specifies "PDS", the data set must be a PDS. If the value in "DIR Blks" column specifies
"N/A", the data set must be a PDSE.

5. All target libraries listed have the following attributes:

o These data sets can be SMS-managed, but they are not required to be SMS-managed.
o These data sets are not required to reside on the IPL volume.

o The values in the "Member Type" column are not necessarily the actual SMP/E element types that
are identified in the SMPMCS.

6. All target libraries that are listed and contain load modules have the following attributes:

o These data sets cannot be in the LPA, with some exceptions. If the value in the "Member Type"
column specifies "LPA", it is advised to place the data set in the LPA.

o These data sets can be in the LNKLST.

o These data sets are not required to be APF-authorized, with some exceptions. If the value in the
"Member Type" column specifies "APF", the data set must be APF-authorized.

Storage requirements for SMP/E work data sets

Library DDNAME TYPE ORG RECFM LRECL No.of3390Trks No. of DIR Blks

SMPWRK6 S PDS FB 80 (300,3000) 50

SYSUT1 u SEQ - -- (300,3000) 0

In the table above, (20,200) specifies a primary allocation of 20 tracks, and a secondary allocation of 200
tracks.

Storage requirements for SMP/E data sets

Liborary DDNAME TYPE ORG RECFM LRECL No.of3390Trks No. of DIR Blks

SMPPTS S PDSE FB 80 (12000,3000) 50

The following figures describe the target and distribution libraries and file system paths required to install
Zowe. The storage requirements of Zowe must be added to the storage required by other programs that
have data in the same library or path.

Note: Use the data in these tables to determine which libraries can be merged into common data sets. In
addition, since some ALIAS names may not be unique, ensure that no naming conflicts will be introduced
before merging libraries.

Storage requirements for Zowe target libraries

Note: These target libraries are not required for the initial FMID install of Zowe SMPJE but will be required for
subsequent SYSMODS so are included here for future reference.

No.
. No. of
Library Member Target of
Type Org RECFM LRECL 3390
DDNAME Type Volume DIR
Trks
Blks
APF Load
SZWEAUTH ANY U PDSE U 0 15 N/A
Modules

SZWESAMP Samples ANY U PDSE FB 80 15 5

No.

No. of
Library Member Target of
Type Org RECFM LRECL 3390
DDNAME Type Volume DIR
Trks
Blks
Load
SZWELOAD ANY U PDSE U 0 30 N/A
Modules

Zowe file system paths

DDNAME TYPE Path Name

SZWEZFS X Jusr/lpp/zowe/SMPE

Storage requirements for Zowe distribution libraries

Note: These target libraries are not required for the initial alpha drop of Zowe SMP/E but will be required for
subsequent drops so are included here for future reference.

Liborary DDNAME TYPE ORG RECFM LRECL No.of3390Trks No. of DIR Blks

AZWEAUTH U PDSE U 0 15 N/A
AZWESAMP U PDSE FB 80 15 5
AZWEZFS U PDSE VB 6995 12000 30

The following figures list data sets that are not used by Zowe, but are required as input for SMPJE.

No. of 3390 No. of DIR

Data Set Name TYPE ORG RECFM LRECL
Trks Blks

hlg.ZOWE.AZWEO0O02.F1 U PDSE FB 80 5 N/A

hlg.ZOWE.AZWE002.F2 U PDSE FB 80 5 N/A

No. of 3390 No. of DIR
Data Set Name TYPE ORG RECFM LRECL

Trks Blks
hlg.ZOWE.AZWE002.F3 U PDSE U 0 30 N/A
hlg.ZOWE.AZWEQ02.F4 U PDSE VB 6995 9900 N/A
hlq.ZOWE.AZWE002.SMPMCS U SEQ FB 80 1 N/A
z/OS UNIX file system U ZFS N/A N/A 28715 N/A

Note: These are temporary data sets, which can be removed after the SMPJE installation.

FMIDs deleted

Installing Zowe might result in the deletion of other FMIDs.

To see which FMIDs will be deleted, examine the ++VER statement in the SMPMCS of the product. If you

do not want to delete these FMIDs now, install Zowe into separate SMPJE target and distribution zones.

Note: These FMIDs are not automatically deleted from the Global Zone. If you want to delete these FMIDs
from the Global Zone, use the SMP/E REJECT NOFMID DELETEFMID command. See the SMP/E Commands
book for details.

Special considerations

Zowe has no special considerations for the target system.

Installation instructions

This section describes the installation method and the step-by-step procedures to install and activate the

functions of Zowe.
Notes:

* If you want to install Zowe into its own SMP/E environment, consult the SMP/E manuals for instructions
on creating and initializing the SMPCSI and SMP/E control data sets.

¢ You can use the sample jobs that are provided to perform part or all of the installation tasks. The SMP/E
jobs assume that all DDDEF entries that are required for SMP/E execution have been defined in
appropriate zones.

* You can use the SMPJE dialogs instead of the sample jobs to accomplish the SMPJE installation steps.

SMPJE considerations for installing Zowe

Use the SMP/E RECEIVE, APPLY, and ACCEPT commands to install this release of Zowe.

SMPJE options subentry values

The recommended values for certain SMP/E CSI subentries are shown in the following table. Using values
lower than the recommended values can result in failures in the installation. DSSPACE is a subentry in the
GLOBAL options entry. PEMAX is a subentry of the GENERAL entry in the GLOBAL options entry. See the
SMP/E manuals for instructions on updating the global zone.

Subentry Value Comment
DSSPACE (1200,1200,1400) Space allocation

PEMAX SMP/E Default IBM recommends using the SMP/E default for PEMAX.

Overview of the installation steps

Follow these high-level steps to download and install Zowe Open Source Project (Base).

1. Download the Zowe SMPJE package

2. Allocate file system to hold web download package

3. Upload the download package to the host

4. Extract and expand the compress SMPMCS and RELFILEs
5. Sample installation jobs

6. Create SMP/E environment (optional)

7. Perform SMP/E RECEIVE

8. Allocate SMPJE target and distribution libraries

9. Allocate, create and mount ZSF files (Optional)

10. Allocate z/OS UNIX paths

11. Create DDDEF Entries

12. Perform SMPJE APPLY

13. Perform SMP/E ACCEPT

14. Run REPORT CROSSZONE

15. Cleaning up obsolete data sets, paths, and DDDEFs

Download the Zowe SMP/E package>P>

To download the Zowe SMPJE package, open your web browser and go to the Zowe Download website. Click
the Zowe SMP/E FMID AZWEO002 button to save the file to a folder on your desktop.

You will receive one ZIP package on your desktop. Extract the following files from the package. You may
need to use the unzip command at a terminal rather than an unzip utility.

e AZWEO002.pax.Z (binary)

The SMPJE input data sets to install Zowe are provided as compressed files in AZWEQ02.pax.Z. This pax
archive file holds the SMP/E MCS and RELFILEs.

e AZWEO0O2.readme.txt (text)

The README file AZWEOQO2.readme.txt is a single JCL file containing a job with the job steps you need
to begin the installation, including comprehensive comments on how to tailor them. There is a sample
job step that executes the z/OS UNIX System Services pax command to extract package archives. This
job also executes the GIMUNZIP program to expand the package archives so that the data sets can be
processed by SMPJE.

e AZWEO002.hml (text)

The Program Directory for the Zowe Open Source Project.

Allocate file system to hold the download package

You can either create a new z/OS UNIX file system (zFS) or create a new directory in an existing file system
to place AZWEOQO02.pax.Z. The directory that will contain the download package must reside on the z/OS
system where the function will be installed.

To create a new file system, and directory, for the download package, you can use the following sample JCL
(FILESYS).

https://www.zowe.org/download.html

Copy and paste the sample JCL into a separate data set, uncomment the job, and modify the job to update
required parameters before submitting it.

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Upload the download package to the host

Upload the AZWEQO2.readme.txt file in text format and the AZWEQ002.pax.Z file in binary format from your
workstation to the z/OS UNIX file system. The instructions in this section are also in the
AZWEO002.readme.txt file that you downloaded.

Note: Ensure you download the pax file in a different file system than where you put Zowe runtime.

There are many ways to transfer the files or make them available to the z/OS system where the package will
be installed. In the following sample dialog, we use FTP from a Microsoft Windows command line to do the
transfer. This assumes that the z/OS host is configured as an FTP host/server and that the workstation is an
FTP client. Commands or other information entered by the user are in bold, and the following values are
assumed.

If you are not sure which protocol or port to use to transfer the files or any access that might be needed, you
may need to consult with the network administrator.

User

Values
enters:
mvsaddr TCP/IP address or hostname of the z/OS system
tsouid Your TSO user ID
tsopw Your TSO password
d: Location of the downloaded files
z/OS UNIX path where to store the files. This matches the @zfs_path@ variable you
@zfs_path@

specified in the previous step.

Important! The AZWE002.pax.Z file must be uploaded to the z/OS driving system in binary format, or the
subsequent UNPAX step will fail.

This step of tranferring the files can take a long time to run, depending on the capacity of your system, and
on what other jobs are running.

Sample FTP upload scenario:

If you are unable to connect with ftp and only able to use sftp, the commands above are the same
except that you will use sftp at the command prompt instead of ftp. Also, because sftp only supports binary
file transfer, the ascii and binary commands should be omitted. After you transfer the AZWEO002.readme.txt
file, it will be in an ASCII codepage so you need to convert it to EBCDIC before it can be used. To convert
AZWEQ02.readme.txt to EBCDIC, log in to the distribution system using ssh and run an ICONV command.

C:>/ssh tsouid@mvsaddr

tsouid@mvsaddr's password: tsopw

/u/tsouid:>

cd:@zfs_path@

@zfs_path:>

@zfs_path:>iconv -f ISO8859-1 -t IBM-1047 AZWEQO2.readme.txt > AZWEO0O0Z2.readme.EBCDIC
@zfs_path:>rm AZWEQ0O02.readme.txt

@zfs_path:>mv AZWEQO2.readme.EBCDIC AZWEQOZ2.readme.txt

@zfs_path:>exit

C:>/

Extract and expand the compressed SMPMCS and RELFILEs

The AZWEOQ0O02.readme.txt file uploaded in the previous step holds a sample JCL to expand the compressed
SMPMCS and RELFILEs from the uploaded AZWEQ0O02.pax.Z file into data sets for use by the SMP/E RECEIVE
job. The JCL is repeated here for your convenience.

* (@zfs_path@ matches the variable that you specified in the previous step.

e Ifthe oshell command gets a RC=256 and message "pax: checksum error on tape (got ee2e,

expected 0)", then the archive file was not uploaded to the host in binary format.

e GIMUNZIP allocates data sets to match the definitions of the original data sets. You might encounter
errors if your SMS ACS routines alter the attributes used by GIMUNZIP. If this occurs, specify a non-
SMS managed volume for the GINUMZIP allocation of the data sets. For example:

e Normally, your Automatic Class Selection (ACS) routines decide which volumes to use. Depending on
your ACS configuration, and whether your system has constraints on disk space, units, or volumes,

some supplied SMP/E jobs might fail due to volume allocation errors. See GIMUNZIP for more details.
GIMUNZIP
The GIMUNZIP job may issue allocation error messages for SYSUT1 similar to these:

The job will end with RC=12. If this happens, add a TEMPDS control statement to the existing SYSIN as
shown below:

where, &VOLSER is a DISK volume with sufficient free space to hold temporary copies of the RELFILES. As
a guide, this may require 1,000 cylinders, or about 650 MB.

Sample installation jobs

The following sample installation jobs are provided in hlq.ZOWE.AZWE@®@2.F1 , or equivalent, as part of

the project to help you install Zowe:

Job Name Job Type Description RELFILE

(Optional) Sample job to create an SMP/E
ZWE1TSMPE SMPJE) ZOWE.AZWEO02.F1
environment

ZWE2RCVE RECEIVE Sample SMP/E RECEIVE job ZOWE.AZWEO002.F1

Sample job to allocate target and distribution
ZWE3ALOC ALLOCATE iibrari ZOWE.AZWEO02.F1
ibraries

(Optional) Sample job to allocate, create
ZWEA4ZFS ALLOMZFS) ZOWE.AZWEO0O02.F1
mountpoint, and mount zFS data sets

Sample job to invoke the supplied ZWEMKDIR
ZWESMKD MKDIR) ZOWE.AZWEOO02.F1
EXEC to allocate file system paths

ZWEGDDEF DDDEF Sample job to define SMP/E DDDEFs ZOWE.AZWEOQ02.F1
ZWE7APLY APPLY Sample SMP/E APPLY job ZOWE.AZWEO02.F1

ZWESACPT ACCEPT Sample SMP/E ACCEPT job ZOWE.AZWEO002.F1

Note: When Zowe is downloaded from the web, the RELFILE data set name will be prefixed by your chosen
high-level qualifier, as documented in the Extract and expand the compressed SMPMCS and RELFILEs
section.

You can access the sample installation jobs by performing an SMP/E RECEIVE (refer to Perform SMP/E
RECEIVE), then copy the jobs from the RELFILES to a work data set for editing and submission.

You can also copy the sample installation jobs from the product files by submitting the following job. Before
you submit the job, add a job statement and change the lowercase parameters to uppercase values to meet

the requirements of your site.
See the following information to update the statements in the sample above:
e IN:
o filevol is the volume serial of the DASD device where the downloaded files reside.
e OUT:

o jcl-library-name is the name of the output data set where the sample jobs are stored.

o dasdvol is the volume serial of the DASD device where the output data set resides. Uncomment
the statement is a volume serial must be provided.

The following supplied jobs might fail due to disk space allocation errors, as mentioned above for GIMUNZIP.
Review the following sections for example error and actions that you can take to resolve the error.

e ZWE2RCVE
* ZWETSMPE and ZWE4ZFS
» ZWEMKDIR, ZWETSMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

ZWE2RCVE

Add space and directory allocations to this SMPCNTL statement in the preceding ZWE1SMPE job:
This makes it as below:

ZWE1SMPE and ZWE4ZFS

Example error

Uncomment the VOLUMES(...) control statements and refer to the comments at the start of the JCL job

for related necessary changes.
ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD
Example error

Uncomment the VOL=SER=&... control statements and refer to the comments at the start of the JCL job

for related necessary changes.

Create SMPJE environment (Optional)

A sample job ZWE1TSMPE is provided or you may choose to use your own JCL. If you are using an existing
CSl, do not run the sample job ZWE1SMPE. If you choose to use the sample job provided, edit and submit
ZWE1TSMPE. Consult the instructions in the sample job for more information.

Note: If you want to use the default of letting your Automatic Class Selection (ACS) routines decide which
volume to use, comment out the following line in the sample job ZWE1SMPE.

// SET CSIVOL=#csivol

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Perform SMP/E RECEIVE

Edit and submit sample job ZWE2RCVE to perform the SMP/E RECEIVE for Zowe. Consult the instructions in
the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Allocate SMPJE target and distributions libraries

Edit and submit sample job ZWE3ALOC to allocate the SMPJE target and distribution libraries for Zowe.
Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Allocate, create and mount ZSF files (Optional)

This job allocates, creates a mountpoint, and mounts zFS data sets.

If you plan to install Zowe into a new z/OS UNIX file system, you can edit and submit the optional ZWE4ZFS
job to perform the following tasks. Consult the instructions in the sample job for more information.

e Create the z/OS UNIX file system
e Create a mountpoint

* Mount the z/OS UNIX file system on the mountpoint
The recommended z/OS UNIX file system type is zFS. The recommended mountpoint is /usr/lpp/zowe.

Before running the sample job to create the z/OS UNIX file system, you must ensure that OMVS is active on
the driving system. zFS must be active on the driving system if you are installing Zowe into a file system that
is zFS.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to
mount the new file system at IPL time. This action can be helpful if an IPL occurs before the installation is
completed.

See the following information to update the statements in the previous sample:

e #dsnis the name of the data set holding the z/OS UNIX file system.

» Jusr/Ipp/zowe is the name of the mountpoint where the z/OS UNIX file system will be mounted.

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Allocate z/OS UNIX paths

The target system HFS or zFS data set must be mounted on the driving system when running the sample
ZWES5MKD job since the job will create paths in the HFS or zFS.

Before running the sample job to create the paths in the file system, you must ensure that OMVS is active on
the driving system and that the target system's HFS or zFS file system is mounted on the driving system.
zFS must be active on the driving system if you are installing Zowe into a file system that is zFS.

If you plan to install Zowe into a new HFS or zFS file system, you must create the mountpoint and mount the
new file system on the driving system for Zowe.

The recommended mountpoint is /usr/lpp/zowe.

Edit and submit sample job ZWESMKD to allocate the HFS or zFS paths for Zowe. Consult the instructions in
the sample job for more information.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to
mount the new file system at IPL time. This action can be helpful if an IPL occurs before the installation is
completed.

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Create DDDEF entries

Edit and submit sample job ZWEGDDEF to create DDDEF entries for the SMPJE target and distribution
libraries for Zowe. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of O if this job runs correctly.

Perform SMP/E APPLY

In this step, you run the sample job ZWE7APLY to apply Zowe. This step can take a long time to run,
depending on the capacity of your system, and on what other jobs are running.

Follow these steps

1. Ensure that you have the latest HOLDDATA, then edit and submit sample job ZWE7APLY to perform an
SMP/E APPLY CHECK for Zowe. Consult the instructions in the sample job for more information.

The latest HOLDDATA is available through several different portals, including
http://service.software.ibm.com/holdata/390holddata.html. The latest HOLDDATA may identify HIPER
and FIXCAT APARs for the FMIDs you will be installing. An APPLY CHECK will help you determine
whether any HIPER or FIXCAT APARs are applicable to the FMIDs you are installing. If there are any
applicable HIPER of FIXCAT APARs, the APPLY CHECK will also identify fixing PTFs that will resolve the
APARs, if a fixing PTF is available.

You should install the FMIDs regardless of the status of unresolved HIPER or FIXCAT APARs. However,
do not deploy the software until the unresolved HIPER and FIXCAT APARs have been analyzed to
determine their applicability. That is, before deploying the software either ensure fixing PTFs are applied
to resolve all HIPER or FIXCAT APARs, or ensure the problems reported by all HIPER or FIXCAT APARs
are not applicable to your environment.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID,
REQ, and IFREQ on the APPLY CHECK. The SMPJE root cause analysis identifies the cause only of errors
and not of warnings (SMPJE treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings, instead of
errors).

http://service.software.ibm.com/holdata/390holddata.html

Here are sample APPLY commands:

i. To ensure that all recommended and critical service is installed with the FMIDs, receive the latest
HOLDDATA and use the APPLY CHECK command as follows

o Some HIPER APARs might not have fixing PTFs available yet. You should analyze the symptom
flags for the unresolved HIPER APARSs to determine if the reported problem is applicable to your
environment and if you should bypass the specific ERROR HOLDs in order to continue the
installation of the FMIDs.

o This method requires more initial research, but can provide resolution for all HPERs that have fixing
PTFs available and not in a PE chain. Unresolved PEs or HIPERs might still exist and require the use
of BYPASS.

ii. To install the FMIDs without regard for unresolved HIPER APARs, you can add the
BYPASS(HOLDCLASS(HIPER)) operand to the APPLY CHECK command. This will allow you to
install FMIDs, even though one of more unresolved HIPER APARs exist. After the FMIDs are
installed, use the SMP/E REPORT ERRSYSMODS command to identify unresolved HIPER APARs
and any fixing PTFs.

o This method is quicker, but requires subsequent review of the Exception SYSMOD report produced
by the REPORT ERRSYSMODS command to investigate any unresolved HIPERs. If you have
received the latest HOLDDATA, you can also choose to use the REPORT MISSINGFIX command
and specify Fix Category IBM.PRODUCTINSTALL-REQUIREDSERVICE to investigate missing
recommended service.

o |f you bypass HOLDs during the installation of the FMIDs because fixing PTFs are not yet available,
you can be notified when the fixing PTFs are available by using the APAR Status Tracking (AST)
function of the ServiceLink or the APAR Tracking function of Resource Link.

2. After you take actions that are indicated by the APPLY CHECK, remove the CHECK operand and run the
job again to perform the APPLY.

Note: The GROUPEXTENDED operand indicates the SMP/E applies all requisite SYSMODs. The requisite
SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from APPLY CHECK: You will receive a return code of O if the job
runs correctly.

Expected Return Codes and Messages from APPLY: You will receive a return code of O if the job runs
correctly.

Perform SMP/E ACCEPT

Edit and submit sample job ZWESACPT to perform an SMP/E ACCEPT CHECK for Zowe. Consult the
instructions in the sample job for more information.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ,
and IFREQ on the ACCEPT CHECK. The SMPJE root cause analysis identifies the cause of errors but not
warnings (SMPJE treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings rather than errors).

Before you use SMPJE to load new distribution libraries, it is recommended that you set the ACCJCLIN
indicator in the distribution zone. In this way, you can save the entries that are produced from JCLIN in the
distribution zone whenever a SYSMOD that contains inline JCLIN is accepted. For more information about
the ACCJCLIN indicator, see the description of inline JCLIN in the SMP/E Commands book for details.

After you take actions that are indicated by the ACCEPT CHECK, remove the CHECK operand and run the
job again to perform the ACCEPT.

Note: The GROUPEXTEND operand indicates that SMP/E accepts all requisite SYSMODs. The requisite
SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from ACCEPT CHECK: You will receive a return code of 0 if this
job runs correctly.

If PTFs that contain replacement modules are accepted, SMP/E ACCEPT processing will link-edit or bind the
modules into the distribution libraries. During this processing, the Linkage Editor or Binder might issue
messages that indicate unresolved external references, which will result in a return code of 4 during the
ACCEPT phase. You can ignore these messages, because the distribution libraries are not executable and
the unresolved external references do not affect the executable system libraries.

Expected Return Codes and Messages from ACCEPT: You will receive a return code of O if this job runs
correctly.

Run REPORT CROSSZONE

The SMP/E REPORT CROSSZONE command identifies requisites for products that are installed in separate
zones. This command also creates APPLY and ACCEPT commands in the SMPPUNCH data set. You can use
the APPLY and ACCEPT commands to install those cross-zone requisites that the SMP/E REPORT
CROSSZONE command identifies.

After you install Zowe, it is recommended that you run REPORT CROSSZONE against the new or updated
target and distribution zones. REPORT CROSSZONE requires a global zone with ZONEINDEX entries that
describe all the target and distribution libraries to be reported on.

For more information about REPORT CROSSZONE, see the SMP/E manuals.

Cleaning up obsolete data sets, paths, and DDDEFs

The web download data sets listed in DASD storage requirements are temporary data sets. You can delete
these data sets after you complete the SMPJE installation.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you
do not have to take further actions to activate Zowe.

Zowe customization
You can find the necessary information about customizing and using Zowe on the Zowe doc site.

e For more information about how to customize Zowe, see Configuring Zowe after installation.

* For more information about how to use Zowe, see Using Zowe.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe/mvd-configuration
https://docs.zowe.org/stable/user-guide/install-zowe-smpe/zowe-getting-started-tutorial

Version: v2.4.x LTS

Installing Zowe SMPJE build with zJOSMF
workflow

z/OSMF workflow simplifies the procedure to create an SMP/E environment for Zowe. Register and execute
the Zowe SMP/E workflow to create SMPJE environment in the z/OSMF web interface. Perform the following

steps to register and execute the Zowe workflow in the z/OSMF web interface:
1. Log in to the z/OSMF web interface.
2. Select Workflows from the navigation tree.
3. Select Create Workflow from the Actions menu.
4. Enter the complete path to the workflow definition file in the Workflow Definition filed.
The workflow is located in the ZWEWRFO1 member of the hlq.ZOWE.AZWEQQ2.F4 data set.
5. (Optional) Enter the path to the customized variable input file that you prepared in advance.

The variable input file is located in ZWEYMLO1 member of the h1lq.ZOWE.AZWEQ@2 data set.

Create a copy of the variable input file. Modify the file as necessary according to the built-in comments.
Set the field to the path where the new file is located. When you execute the workflow, the values from

the variable input file override the workflow variables default values.
6. Select the system where you want to execute the workflow.
7. Select Next.
8. Specify the unique workflow name.
9. Select or enter an Owner Use ID and select Assign all steps to owner user ID.
10. Select Finish.
The workflow is registered in z/OSMF and ready to execute.

11. Select the workflow that you registered from the workflow list.

12. Execute the steps in order.

For general information about how to execute z/OSMF workflow steps, watch the z/OSMF Workflows
Tutorial.

13. Perform the following steps to execute each step individually:
i. Double-click the title of the step.
ii. Select the Perform tab.
iii. Review the step contents and update the input values as required.
iv. Select Next.
v. Repeat the previous two steps to complete all items until the option Finish is available.
vi. Select Finish.
After you execute each step, the step is marked as Complete. The workflow is executed.

After you complete executing all the steps individually, the Zowe SMPJE is created.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you
do not have to take further actions to activate Zowe.

Zowe customization
You can find the necessary information about customizing and using Zowe on the Zowe doc site.

e For more information about how to customize Zowe, see Configuring Zowe after installation.

e For more information about how to use Zowe, see Using Zowe.

https://www.youtube.com/watch?v=KLKi7bhKBlE&feature=youtu.be
https://docs.zowe.org/stable/user-guide/mvd-configuration
https://docs.zowe.org/stable/user-guide/zowe-getting-started-tutorial

Version: v2.4.x LTS

Installing Zowe from a Portable Software
Instance

As a systems programmer, your responsibilities include acquiring, installing, maintaining, and configuring
mainframe products on your systems. z/OSMF lets you perform these tasks. z/OSMF lets you manage
software on your z/OS systems through a browser at any time, from any location. By streamlining some
traditional tasks and automating others, z/OSMF can simplify some areas of system management and also
reduce the level of expertise that is required for managing system activities. Experienced users can view,
define, and update policies that affect system behavior, monitor system performance, and manage their
z/OS software. As products and vendors adopt z/JOSMF services, you can install and maintain all your
mainframe products in a common way according to industry best practices. After configuration is complete,
you can execute the product and easily provision new software instances for use on other systems

throughout your environment.

Prerequisites

To install Zowe using z/OSMF, ensure that you meet the following requirements:

e z/OSMF 2.3 or higher
* 1.2GB of free space

e READ access to data set names with the HLQ ZWE on the user ID you use to deploy the portable
package

Procedure

Refer to the following subpages to guide you through the installation procedure using z/OSMF.

» Address z/OSMF Requirements
Provides information about z/OSMF general configuration and security requirements.

* Acquire a zJOSMF Portable Software Instance
Provides the steps to acquire the product software by downloading the z/OSMF portable software
instance to the z/JOSMF host. You must then register the portable software instance in zZOSMF.

¢ Install Product Software Using z/OSMF Deployments
Provides the steps to install (deploy) the portable software instance to an LPAR using z/OSMF

Deployments. This step creates the SMP/E environment and runs the RECEIVE, APPLY, and ACCEPT
steps to prepare the software instance for SMP/E operations. This step also:

When these tasks are completed, you are ready to install preventive maintenance.

Version: v2.4.x LTS

Address zJ]OSMF Requirements

Before you install Zowe using IBM z/OSMF, address the following installation and security requirements. Your

systems programmers and security administrators can complete these tasks in parallel.

* Apply required maintenance for Common Components and Services for z/OS (CCS) Version 15.0
(S012499)

o Role: Systems programmer

o The CCS PTF installs load module stubs for select IBM products into your installed CCS library
hlg.ZWEOCALL. If you are prompted during installation for the data set name of a load library for an
IBM product that is not installed, specify your installed hlg.ZWEOCALL data set name.

» Configure z/OSMF

o Role: Systems programmer, security administrator, domain administrator

o The IBM z/OS Management Facility Configuration Guide is your primary source of information
about how to configure z/OSMF. You can open the IBM documentation in a separate browser tab
for reference during installation of your products using z/OSMF Deployments. To prevent
configuration errors and to enable z/OSMF Software Update for maintenance, apply all z/ OSMF

related maintenance before you begin the installation process.

» Configure z/OSMF security

o Role: Security administrator

o Configure z/OSMF security for ACF2, Top Secret, or IBM RACF as applicable to authorize users and
resources. To prevent SSL handshake failures when importing product information into z/OSMF,
make sure that you have added the Digicert Intermediate CA certificate to the z/OSMF keyring. For
information, see Import Product Information into z/OSMF.

* Confirm that the installer has read, create, update, and execute privileges in z/OS

o Role: Security administrator

o Write access is also required to the UNIX System Services (USS) directories that are used for the
installation process. To deploy a product that has USS components, the installer's user ID must
have access to the appropriate resource profiles in the UNIXPRIV class, access to the
BPX.SUPERUSER resource profile in the FACILITY class, or UID(0). For UNIXPRIV, read access is

required to SUPERUSER.FILESYS.CHOWN, SUPERUSER.FILESYS.CHGRP, and
SUPERUSER.FILESYS.MOUNT.

e Address USS requirements

o Role: Systems programmer, security administrator

o Address the following USS requirements:
= Create a USS directory to receive the z/OSMF pax file and to perform the unpack steps.
= Confirm that you have write authority to the USS directories that are used for the z/OSMF pax
installation process.
= Confirm that you have available USS file space.

o To download and unpack the pax file, you need free space that is approximately 3.5 times the pax
file size in the file system that contains the pax directories. For example, to download and unpack a
14-MB pax file, you need approximately 49 MB of free space in the file system hosting your pax
directory. If you do not have sufficient free space, error messages like EZA1490I Error writing to
data set or EZA2606W File /O error 133 can occur.

» Configure SMPJE Internet Service Retrieval

o Role: Systems programmer, security administrator

o Configure SMPJE Internet Service Retrieval to receive and download maintenance on a regular
cadence or build custom maintenance packages (order PTFs, APARs, critical, recommended, all, or
just HOLDDATA). This step is our recommended best practice when installing maintenance and is
required to use the z/JOSMF Software Update. For configuration details, see the Mainframe

Common Maintenance Procedures documentation.

After these requirements have been addressed, you are ready to acquire a z/OSMF Portable Software

Instance or Configure a Software Instance using z/OSMF Workflows.

Version: v2.4.x LTS

Acquire a zJOSMF Portable Software
Instance

As a systems programmer, you can acquire an IBM z/OSMF portable package for your product and then add
the portable software instance to z/OSMF. The product SMP/E environments are pre-built, backed up, and
made available for download as a z/OSMF portable software instance. After you acquire the portable
software instance, you can use z/OSMF Deployments to perform the installation and z/OSMF workflows to
perform post-install configuration.

When you complete the acquisition process, the product software is ready for installation using z/OSMF
Deployments.

¢ Note: Before you begin the acquisition process, ensure that you address the z/OSMF requirements.
The z/OSMF product acquisition process consists of the following tasks.

1. Download the portable software instance from Zowe downloads and transfer it to the mainframe.

2. Register the portable software instance in z/OSMF.

Refer to the sections below for instructions.

Download the Portable Software Instance from Zowe
Downloads

To acquire the portable software instance, you download it from the Zowe Downloads page and transfer it to
a local z/JOSMF host using a file transfer utility, such as FTP.

The portable software instance is a portable form of a software instance, including the SMP/E CSI data sets,
all associated SMP/E-managed target and distribution libraries, non-SMP/E-managed data sets, and meta-
data that is required to describe the product software instance.

1. Go to Zowe Downloads and find Zowe - Portable Software Instance.
2. Download the latest version of the package to your workstation.

3. Use an file transfer utility such as an FTP client to transfer the single pax file to the mainframe.

https://www.zowe.org/download.html

4. Execute the JCL to unpack the installation file and restore the individual pax files. Sample JCL follows:
//USSBATCH EXEC PGM=BPXBATCH
//STDOUT DD SYSOUT=x //STDERR DD SYSOUT=x //STDPARM DD * sh cd
/yourUSSpaxdirectory/;
pax —-rvf yourpaxfilename.Z0OSMF.pax.Z
/%
Customize the sample JCL as follows and then submit for execution:

USSBATCH can take several minutes to execute. A return code of zero is expected. Any other return
code indicates a problem.

After successful execution, the individual pax files are restored and ready for use. Go to Register Portable
Software Instance in z/OSMF.

Register Portable Software Instance in z/OSMF

After you have acquired and downloaded the portable software instance to a local z/OSMF host system, you
must log in to z/OSMF to register the product software and define the portable software instance to z/OSMF
as shown in the following procedure. When you complete these steps, the portable software instance is
registered in z/OSMF and ready for installation (deployment).

1. Log in to the z/OSMF web interface and select your user ID in the top or bottom right-hand corner to
switch between the Desktop Interface and Classic Interface.

2. Complete either of the following steps to display the Software Management page:
i. In the Desktop Interface, select Software Management.

ii. Inthe Classic Interface, select Software, Software Management.
3. Select Portable Software Instances to define your portable software instance to z/OSMF.

4. Select Add from the Actions menu and select From zJOSMF System.
The Add Portable Software Instance page displays.

5. Select or type the system name (destination LPAR) and UNIX directory (destination USS directory)
where the portable software instance files reside and select Retrieve.

6. Enter a name for the new portable software instance. You can also enter an optional description and
assign one or more categories that display existing packages.

7. Select OK.
The new portable software instance is now defined to z/OSMF.

The portable software instance is now registered in z/OSMF and ready to install (deploy).

Version: v2.4.x LTS

Install Product Software Using z/OSMF
Deployments

As a systems programmer, your responsibilities include installing product software in your z/OS environment.
After the portable software instance or software instance is registered in z/OSMF, you can use z/OSMF
Deployments to install the product software and create the product data sets (global, CSI, target libraries,
and distribution libraries) for the new software instance. The deployment jobs create a copy of the source
product data sets to create the product target runtime environment. Creating a copy of the SMPJE target
data sets keeps the SMP/E environment clean and it also isolates the product runtime environment for
maintenance activities. You can also perform z/OSMF workflows to customize the SMPJE data sets, mount
UNIX System Services (USS) files if necessary, and configure the new software instance on the target
system.

To install Zowe PSWI using z/OSMF and make the product software available for use on a system by users
and other programs, define a new deployment. This step defines the SMP/E environment name and the
prefix of the CSl data set in z/OSMF. You also specify data set allocation parameters for all SMP/E data sets,
target libraries, and distribution libraries. To define a new deployment, complete the deployment checklist
(specify the USS path, DSN, VOLSERSs), and submit the deployment jobs through the z/OSMF user interface.
When the deployment is complete, you have a source and target copy of the software.

For more information about these tasks, see Deploying software in the IBM documentation.

Subsequent maintenance activities for the product update the SMP/E environment without affecting your
active product runtime environments. You decide when to redeploy the maintenance-updated SMPJE target
data sets to each of the product runtime environments.

Note: The installer requires read, create, update, and execute privileges in z/OS. Write access is also
required to the USS directories that are used for the installation process. To deploy a product that has USS
components, the installer's user ID must have access to the appropriate resource profiles in the UNIXPRIV
class, access to the BPX.SUPERUSER resource profile in the FACILITY class, or UID(0). For UNIXPRIV, read
access is required to SUPERUSER.FILESYS.CHOWN, SUPERUSER.FILESYS.CHGRP, and
SUPERUSER.FILESYS.MOUNT.

1. Display the Deployments table in z/OSMF (Software ManagementU, Deployments).

2. Define a new deployment by selecting New from the Actions menu.
The deployment checklist displays. You can also modify, view, copy, cancel, or remove existing

https://www.ibm.com/docs/en/zos/2.4.0?topic=task-deploying-software

deployments.

3. Complete the deployment checklist items as described in Defining new deployments in the IBM
documentation.

As you complete the deployment checklist, be sure to make the following selections:

The deployment process is complete. The new software instance is defined to z/OSMF. You are now ready to
Import Product Information into z/OSMF before you install product maintenance.

Version: v2.4.x LTS

Initializing the z/OS system

After you install the Zowe runtime, you must initialize Zowe with proper security configurations and complete
some configurations before you can start it. To do this, yourunthe zwe init command. This step is

common for installing and configuring Zowe from either a convenience build or from an SMPJE build.

About the zwe init command

The zwe init command is a combination of the following subcommands. Each subcommand defines a

configuration.

mvs : Copy the data sets provided with Zowe to custom data sets.

* security : Create the user IDs and security manager settings.

apfauth : APF authorize the LOADLIB containing the modules that need to perform z/OS privileged
security calls.

certificate : Configure Zowe to use TLS certificates.

e vsam : Configure the VSAM files needed to run the Zowe caching service used for high availability (HA)

stc : Configure the system to launch the Zowe started task.

You cantype zwe init —-help tolearn more about the command or see the zwe init command

reference for detailed explanation, examples, and parameters.

zwe init command requires a Zowe configuration file to proceed. This configuration file instructs how
Zowe should be initialized. You must create and review this file before proceeding. If you don't have the file
already, you can copy from example-zowe.yaml located in the Zowe runtime directory.

TIP

The following zwe init arguments might be useful:

e The —-update-config argument allows the init process to update your configuration file based
on automatic detection and your zowe.setup settings. For example, if java.home and
node.home are not defined, they can be updated based on the information that is collected on
the system. The zowe.certificate section can also be updated automatically based on your

zowe.setup.certificate settings.

https://docs.zowe.org/stable/user-guide/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/user-guide/initialize-zos-system/installandconfig#zowe-configuration-file

e The ——allow-overwrite argument allows you torerunthe zwe init command repeatedly

regardless of whether some data sets are already created.

e The —v or ——verbose argument provides execution details of the zwe command. You can

use it for troubleshooting purposes if the error message is not clear enough.

e The -vv or ——trace argument provides you more execution details than the ——verbose

mode for troubleshooting purposes.

Procedure

To initialize the z/OS system and permissions that Zowe requires, run the following command.

Next steps

The zwe init command runs the subcommands in sequence automatically. If you have successfully ran

the above command, you can move on to start Zowe.

You can choose to run the subcommands one by one to define each step based on your need, or if you
encounter some failures with zwe init command, you can pick up the failed subcommands step

specifically and rerun it.
1. Prepare custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.
2. Initialize Zowe security configurations. Create the user IDs and security manager settings.

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2, you can skip
this security configuration step unless told otherwise in the release documentation.

3. APF authorize load libraries containing the modules that need to perform z/OS privileged security calls..
4. Configure Zowe to use TLS certificates.

5. (Required only if you are configuring Zowe for cross LPAR sysplex high availability): Create the VSAM
data sets used by the Zowe API Mediation Layer caching service.

6. Install Zowe main started tasks.

https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/initialize-mvs-datasets
https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-certificates-keystore
https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset
https://docs.zowe.org/stable/user-guide/install-stc-members

To learn how torunthe zwe init command step by step, type zwe init <sub-command> —-help .

For example, zwe init stc ——help.

Version: v2.4.x LTS

Initializing Zowe custom data sets

Learn how to intialize Zowe custom MVS data sets by using the zwe init mvs command.

Introduction

During the installation of Zowe, three data sets SZWEAUTH , SZWESAMP and SZWEEXEC are created and

populated with members copied across from the Zowe installation files. The contents of these data sets
represent the original files that were provided as part of the Zowe installation and are not meant to be

modified because they will be replaced during subsequent upgrades of Zowe version 2.

For modification and execution, you must create custom data sets by usingthe zwe init mvs command.

For detailed information about this command, see the zwe init mvs command reference.
The zowe.yaml section that contains the parameters for the data set names is:

The storage requirements for the three data sets are included here.

Library Member Target
zowe.yaml Type Org
DDNAME Type Volume
PARM
CUST.PARMLIB Library zowe.setup.dataset.parmlib ANY U PDSE
Members
JCL -
CUST.JCLLIB zowe.setup.dataset.jcllib ANY U PDSE
Members
CLIST
CUST.ZWESAPL copy zowe.setup.dataset.authPluginLib ANY U PDSE

utilities

RECF

FB

FB

https://docs.zowe.org/stable/user-guide/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs

Procedure
To initialize Zowe custom data sets, run the following command:

Here is an example of running zwe init mvs .

Results

If this step is successful, there will be three custom data sets matching the values in
zowe.setup.dataset.parmlib, zowe.setup.dataset.jcllib and
zowe.setup.dataset.authPluginLib inthe zowe.yaml file. The member ZWESIP@@ will existin

the CUST.PARMLIB andthe JCLLIB and ZWESAPL will be empty.

In addition to the three custom data sets, the PDS SZWEAUTH is created. This may already exist. In this
case, you will receive the error message Error ZWEL@158E: IBMUSER.ZWEV2.SZWEAUTH already
exists . You can ignore this message, or you can use the ——allow-overwritten option on the

command. For example, zwe init mvs -c zowe.yaml —-allow-overwritten .

Version: v2.4.x LTS

Initialize Zowe security configurations

This security configuration step is required for first time setup of Zowe. If Zowe has already been launched
on a z/OS system from a previous release of Zowe v2, you can skip this step unless told otherwise in the
release documentation.

The JCL member .SZWESAMP (ZWESECUR) is provided to assist with the security configuration. Before
submitting the ZWESECUR JCL member, you should customize it to match site security rules. For script
driven scenarios, you can run the command zwe init security which uses ZWESECUR as atemplate
to create a customized member in .CUST.JCLLIB which contains the commands needed to perform the

security configuration.

Configuring with zwe init security command

The zwe init security command reads data from zowe.yaml and will construct a JCL member
using ZWESECUR as a template which is then submitted. This is a convenience step to assist with driving
Zowe configuration through a pipeline or when you prefer to use USS commands rather than directly edit
and customize JCL members.

Specify the parameter ——security-dry-run to construct a JCL member containing the security
commmands without running it. This is useful for previewing commands and can also be used to copy and
paste commands into a TSO command prompt for step by step manual execution. Here is an example:

Configuring with ZWESECUR JCL

You may skip using zwe init security to prepare a JCL member to configure the z/OS system, and
edit ZWESECUR directly to make changes.

The JCL allows you to vary which security manager you use by setting the PRODUCT variable to be one of
RACF , ACF2 ,or TSS.

If ZWESECUR encounters an error or a step that has already been performed, it will continue to the end, so
it can be run repeatedly in a scenario such as a pipeline automating the configuration of a z/OS environment
for Zowe installation.

It is expected that the security administrator at a site will want to review, edit where necessary, and either
execute ZWESECUR as a single job or else execute individual TSO commands one by one to complete the

security configuration of a z/OS system in preparation for installing and running Zowe.

The following video shows how to locate the ZWESECUR JCL member and execute it.

Undo security configurations

If you want to undo all of the z/OS security configuration steps performed by the JCL member ZWESECUR ,
Zowe provides a reverse member ZWENOSEC that contains the inverse steps that ZWESECUR performs.

This is useful in the following situations:

* You are configuring z/OS systems as part of a build pipeline that you want to undo and redo
configuration and installation of Zowe using automation.

e You have configured a z/OS system for Zowe that you no longer want to use and you prefer to delete
the Zowe user IDs and undo the security configuration settings rather than leave them enabled.

If you run ZWENOSEC on a z/OS system, then you will no longer be able to run Zowe until you rerun
ZWESECUR to reinitialize the z/OS security configuration.

Next steps

The ZWESECUR JCL does not perform the following initialization steps so after you run ZWESECUR , you

must complete these steps manually to further configure your z/OS environment.

» Perform APF authorization of Zowe load libraries that require access to make privileged calls
e Copy the JCL members for Zowe's started tasks to a PDS on proclib concatenation path

* Create VSAM data sets used by the Zowe caching service

e Grant users permission to access z/OSMF

e Configure an ICSF cryptographic services environment

e Configure multi-user address space (for TSS only)

The ZWESECUR JCL performs the following initialization steps so you do not need to perform them
manually if you have successfully run the JCL. However, if you prefer to manually configure the z/OS
environment, you must complete the following steps next.

e User IDs and groups for the Zowe started tasks
e Configure ZWESLSTC to run high availability instances under ZWESVUSR user ID

e Configure the cross memory server for SAF

https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/install-stc-members
https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset
https://docs.zowe.org/stable/user-guide/grant-user-permission-zosmf
https://docs.zowe.org/stable/user-guide/initialize-security-configuration/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/stable/user-guide/initialize-security-configuration/configure-zos-system#configure-multi-user-address-space-for-tss-only
https://docs.zowe.org/stable/user-guide/initialize-security-configuration/configure-zos-system#user-ids-and-groups-for-the-zowe-started-tasks
https://docs.zowe.org/stable/user-guide/initialize-security-configuration/configure-zos-system#configure-zweslstc-to-run-under-zwesvusr-user-ID
https://docs.zowe.org/stable/user-guide/initialize-security-configuration/configure-zos-system#configure-the-cross-memory-server-for-saf

Version: v2.4.x LTS

Configuring the z/OS system for Zowe

Learn how to configure the z/OS system for Zowe. Before you begin, check the following table to understand
which steps you need to perform based on your settings.

Configuration step Purpose

Configure an ICSF o))
)) Required if you want to use Zowe desktop. This step will generate
cryptographic services
) random numbers for zssServer that the Zowe desktop uses.
environment

Configure security Required if you want to allow users to log on to the Zowe desktop
environment switching through impersonation.

Configure address space Required if you want to set the names for the different z/OS UNIX

job naming address spaces for the Zowe runtime components.

Configure multi-user Required for TSS only. A TSS FACILITY needs to be defined and assigned

address space for TSSonly tothe ZWESLSTC started task.

Configure user IDs and o .
Required if you have not run ZWESECUR and are manually creating the
groups for the Zowe started])
task user ID and groups in your z/OS environment.
asks

Configure ZWESLSTC to

) o Required if you have not run ZWESECUR and are configuring your z/OS
run Zowe high availability

) environment manually. This step describes how to configure the started
instances under

task ZWESLSTC to run under the correct user ID and group.
ZWESVUSR user ID

Required if you have not run ZWESECUR and are configuring your z/OS
Configure the cross environment manually. This step describes how to configure the cross
memory server for SAF memory server for SAF to guard against access by non-priviledged

clients.

Configuration step Purpose

Configure main Zowe) o . .
)) Required for API Mediation Layer to map client certificate to a z/OS
server to use identity

) identity.
mapping
Configure signed SAF Required to configure SAF Identity tokens on z/OS so that they can be
Identity tokens IDT used by Zowe components like zss or APl Mediation Layer.

Configure an ICSF cryptographic services environment

The zssServer uses cookies that require random number generation for security. To learn more about the
zssServer, see the Zowe architecture. Integrated Cryptographic Service Facility (ICSF) is a secure way to
generate random numbers.

If you have not configured your z/OS environment for ICSF, see Cryptographic Services ICSF: System
Programmer's Guide for more information. To see whether ICSF has been started, check whether the started
task ICSF or CSF isactive.

If you run Zowe high availability on a Sysplex, ICSF needs to be configured in a Sysplex environment to share
KDS data sets across systems in a Sysplex. For detailed information, see Running in a Sysplex Environment

The Zowe z/OS environment configuration JCL member ZWESECUR does not perform any steps related to

ICSF that is required for zssServer that the Zowe desktop uses. Therefore, if you want to use Zowe desktop,
you must perform the steps that are described in this section manually.

To generate symmetric keys, the ZWESVUSR user who runs Zowe server started task requires READ access
to CSFRNGL inthe CSFSERV class.

Define or check the following configurations depending on whether ICSF is already installed:
e The ICSF or CSF job that runs on your z/OS system.

e The configuration of ICSF options in SYS1.PARMLIB(CSFPRM@O@) , SYS1.SAMPLIB
SYS1.PROCLIB .

e Create CKDS, PKDS, TKDS VSAM data sets.

https://docs.zowe.org/stable/getting-started/zowe-architecture#zssserver
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm
https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-running-in-sysplex-environment

e Define and activate the CSFSERV class:
o If you use RACEF, issue the following commands:

o |f you use ACF2, issue the following commands (note that profile-prefix and profile-

suffix are user-defined):
(repeat for userids IKED, NSSD, and Policy Agent)

o |f you use Top Secret, issue the following command (note that profile-prefix and profile-

suffix are user defined):
(repeat for user-acids IKED, NSSD, and Policy Agent)
Notes:

e Determine whether you want SAF authorization checks against CSFSERV and set
CSF.CSFSERV.AUTH.CSFRNG.DISABLE accordingly.
e Refer to the z/OS 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation,
initialization, and customization.
e CCA and/or PKCS #11 coprocessor for random number generation.

e Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if
required.

Configure security environment switching

Typically, the user ZWESVUSR that the Zowe server started task runs under needs to be able to change the
security environment of its process to allow API requests to be issued on behalf of the logged on TSO user
ID, rather than the server's user ID. This capability provides the functionality that allows users to log on to the
Zowe desktop and use apps such as the File Editor to list data sets or USS files that the logged on user is
authorized to view and edit, rather than the user ID running the Zowe server. This technique is known as
impersonation.

To enable impersonation, you must grant the user ID ZWESVUSR associated with the Zowe server started
task UPDATE access to the BPX.SERVER and BPX.DAEMON profilesinthe FACILITY class.

You can issue the following commands first to check whether you already have the impersonation profiles
defined as part of another server configuration, such as the FTPD daemon. Review the output to confirm

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

that the two impersonation profiles exist and the user ZWESVUSR who runs the Zowe server started task
has UPDATE access to both profiles.

 If you use RACF, issue the following commands:
 If you use Top Secret, issue the following commands:
* If you use ACF2, issue the following commands:

If the user ZWESVUSR who runs the Zowe server started task does not have UPDATE access to both

profiles follow the instructions below.
* If you use RACF, complete the following steps:

i. Activate and RACLIST the FACILITY class. This may have already been done on the z/OS
environment if another z/OS server has been previously configured to take advantage of the ability
to change its security environment, such as the FTPD daemon that is included with z/OS
Communications Server TCP/IP services.

ii. Define the impersonation profiles. This may have already been done on behalf of another server
such as the FTPD daemon.

iiil. Having activated and RACLIST the FACILITY class, the user ID ZWESVUSR who runs the Zowe

server started task must be given update access to the BPX.SERVER and BPX.DAEMON profiles in
the FACILITY class.

where <zowe_stc_user>is ZWESVUSR unless a different user ID is being used for the z/OS

environment.
| Activate these changes |
iv. Issue the following commands to check whether permission has been successfully granted:
* If you use Top Secret, complete the following steps:
i. Define the BPX Resource and access for <zowe_stc_user>.

where <zowe_stc_user>is ZWESVUSR unless a different user ID is being used for the z/OS

environment.

ii. Issue the following commands and review the output to check whether permission has been
successfully granted:

 If you use ACF2, complete the following steps:
i. Define the BPX Resource and access for <zowe_stc_user>.

where <zowe_stc_user>is ZWESVUSR unless a different user ID is being used for the z/OS

environment.

ii. Issue the following commands and review the output to check whether permission has been
successfully granted:

Configure address space job naming

The user ID ZWESVUSR that is associated with the Zowe started task must have READ permission for the
BPX.JOBNAME profile inthe FACILITY class. Thisis to allow setting of the names for the different z/OS

UNIX address spaces for the Zowe runtime components.
To display who is authorized to the profile, issue the following command:
Additionally, you need to activate facility class, permit BPX.JOBNAME , and refresh facility class:

For more information, see Setting up the UNIX-related FACILITY and SURROGAT class profiles in the "z/OS
UNIX System Services" documentation.

Configure multi-user address space (for TSS only)

The Zowe server started task ZWESLSTC is multi-user address space, and therefore a TSS FACILITY needs
to be defined and assigned to the started task. Then, all acids signing on to the started task will need to be
authorized to the FACILITY.

The following example shows how to create a new TSS FACILITY.
Example:

In the TSSPARMS, add the following lines to create the new FACILITY:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/fclass.htm

For more information about how to administer Facility Matrix Table, see How to Perform Facility Matrix Table

Administration.
To assign the FACILITY to the started task, issue the following command:

To authorize a user to sign on to the FACILITY, issues the following command:

Configure user IDs and groups for the Zowe started tasks

Zowe requires a user ID ZWESVUSR to execute its main z/OS runtime started task. This user ID must have a
valid OMVS segment.

Zowe requires a user ID ZWESIUSR to execute the cross memory server started task ZWESISTC . This

user ID must have a valid OMVS segment.

Zowe requires a group ZWEADMIN that both ZWESVUSR and ZWESIUSR should belong to. This group

must have a valid OMVS segment.

If you have run ZWESECUR , you do not need to perform the steps described in this section, because the

TSO commands to create the user IDs and groups are executed during the JCL sections of ZWESECUR .

If you have not run ZWESECUR and are manually creating the user ID and groups in your z/OS environment,

the commands are described below for reference.
e To create the ZWEADMIN group, issue the following command:
e To create the ZWESVUSR user ID for the main Zowe started task, issue the following command:

* To create the ZWESIUSR group for the Zowe cross memory server started task, issue the following

command:

Configure ZWESLSTC to run Zowe high availability
instances under ZWESVUSR user ID

You need Zowe started task ZWESLSTC for Zowe high availability. When the Zowe started task ZWESLSTC
is started, it must be associated with the user ID ZWESVUSR and group ZWEADMIN . A different user ID and

group can be used if required to conform with existing naming standards.

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/using/protecting-facilities/how-to-perform-facility-matrix-table-administration.html

If you have run ZWESECUR , you do not need to perform the steps described in this section, because they
are executed during the JCL section of ZWESECUR .

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps

describe how to configure the started task ZWESLSTC to run under the correct user ID and group.
* If you use RACF, issue the following commands:
 If you use ACF2, issue the following commands:

 If you use Top Secret, issue the following commands:

Configure the cross memory server for SAF

Zowe has a cross memory server that runs as an APF-authorized program with key 4 storage. Client
processes accessing the cross memory server's services must have READ access to a security profile

ZWES.IS inthe FACILITY class. This authorization step is used to guard against access by non-
priviledged clients.

If you have run ZWESECUR you do not need to perform the steps described in this section.

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps

describe how to configure the cross memory server for SAF.

Activate the FACILITY class, definea ZWES.IS profile, and grant READ access to the user ID ZWESVUSR .

This is the user ID that the main Zowe started task runs under.

To do this, issue the following commands that are also included in the ZWESECUR JCL member. The

commands assume that you run the Zowe server under the ZWESVUSR user.
 If you use RACF, issue the following commands:
o To see the current class settings, use:
o To define and activate the FACILITY class, use:
o To RACLIST the FACILITY class, use:

o To define the ZWES.IS profile in the FACILITY class and grant Zowe's started task userid READ

access, issue the following commands:

where <zowe_stc_user> istheuserID ZWESVUSR under which the Zowe server started task

runs.
o To check whether the permission has been successfully granted, issue the following command:

This shows the user IDs who have access to the ZWES. IS class, which should include Zowe's

started task user ID with READ access.

 If you use ACF2, issue the following commands:

 If you use Top Secret, issue the following commands, where owner—-acid can be IZUSVR or a
different ACID:

Notes:

e The cross memory server treats "no decision" style SAF return codes as failures. If there is no covering
profile for the ZWES. IS resource in the FACILITY class, the request will be denied.

e Cross memory server clients other than Zowe might have additional SAF security requirements. For
more information, see the documentation for the specific client.

Configure main Zowe server to use identity mapping

This security configuration is necessary for API ML to be able to map client certificate to a z/OS identity. A
user running API Gateway must have read access to the RACF general resource IRR.RUSERMAP in the
FACILITY class. To set up this security configuration, submit the ZWESECUR JCL member. For users

upgrading from version 1.18 and lower use the following configuration steps.

Using RACF

If you use RACF, verify and update permission inthe FACILITY class.
Follow these steps:

1. Verify user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

3. Activate changes.

Using ACF2
If you use ACF2, verify and update permission in the FACILITY class.
Follow these steps:

1. Verify user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

Using TSS
If you use TSS, verify and update permissionin FACILITY class.
Follow these steps:

1. verify user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

Configure signed SAF Identity tokens (IDT)

This section provides a brief description of how to configure SAF Identity tokens on z/OS so that they can be
used by Zowe components like zss or APl Mediation layer (Implement a new SAF IDT provider)

General steps are:

1. Create PKCS#11 token

2. Generate a secret key for the PKCS#11 token (you can use the sample program ZWESECKG in the
SZWESAMP dataset)

3. Define a SAF resource profile under the IDTDATA SAF resource class

Details with examples can be found in documentation of external security products:

» RACF - Signed and Unsigned Identity Tokens and IDT Configuration subsections in z/OS Security
Server RACROUTE Macro Reference book, link.

» Top Secret - Maintain Identity Token (IDT) Records subsection in Administrating chapter, link.

* ACF2 - IDTDATA Profile Records subsection in Administrating chapter, link.

https://docs.zowe.org/stable/extend/extend-apiml/implement-new-saf-provider
https://www.ibm.com/docs/en/zos/2.4.0?topic=reference-activating-using-idta-parameter-in-racroute-requestverify
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/maintaining-special-security-records/maintain-identity-token-(idt)-records.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/administrating/administer-records/profile-records/idtdata-profile-records.html

A part of the Signed SAF Identity token configuration is a nontrivial step that has to generate a secret key for
the PKCS#11 token. The secret key is generated in ICSF by calling the PKCS#11 Generate Secret Key
(CSFPGSK) or Token Record Create (CSFPTRC) callable services. An example of the CSFPGSK callable
service can be found in the SZWESAMP dataset as the ZWESECKG job.

Version: v2.4.x LTS

Granting users permission to access zJOSMF

For every TSO user ID that is going to log on to Zowe and use services that require z/OSMF, it must have
permission to access the z/OSMF services that are used by Zowe. They should be added to the group with
appropriate z/OSMF privileges, IZUUSER or IZUADMIN by default.

This step is not included in the provided Zowe JCL because it must be done for every TSO user ID who
wants to access Zowe's z/OS services. The list of those user IDs will typically be the operators,
administrators, developers, or anyone else in the z/OS environment who is logging in to Zowe.

Note: You can skip this section if you use Zowe without z/OSMF. Zowe can operate without z/OSMF but
services that use z/OSMF REST APIs will not be available, specifically the USS, MVS, and JES Explorers and
the Zowe Command Line Interface files, jobs, workflows, tso, and console groups.

To grant permissions to the user ID to access z/OSMF,
 If you use RACF, issue the following command:
 If you use ACF2, issue the following commands:

 If you use Top Secret, issue the following commands:

Version: v2.4.x LTS

APF authorize load libraries

Learn how to perform APF authorization of Zowe load libraries that require access to make privileged calls.

Zowe contains load modules that require access to make privileged z/OS security manager calls. These are
held in two load libraries which must be APF authorized. The command zwe init apfauth will read the

PDS names for the load libraries from zowe.yaml and perform the APF authority commands.

e zowe.Setup.dataset.authLoadlLib specifies the user custom load library, containing the
ZWELNCH , ZWESISQ1 and ZWESAUX load modules. These are the Zowe launcher, the ZIS cross
memory server and the auxiliary server.

e zowe.setup.dataset.authPluginLib which references the load library for ZIS plugins.

Here is an example of running zwe init apfauth:

Specify ——security-dry-run to have the command echo the commands that need to be run without
them being executed.

Version: v2.4.x LTS

Configuring PKCS12 certificates

Zowe is able to use PKCS12 certificates that are stored in USS. This certificate is used for encrypting TLS
communication between Zowe clients and the Zowe z/OS servers, as well as intra z/OS Zowe server to Zowe
server. Zowe uses a keystore directory to contain its external certificate, anda truststore directory

to hold the public keys of servers it communicate with (for example z/OSMF).

Using USS PKCS12 certificates is useful for proof of concept projects using a self signed certificates. For
production usage of Zowe it is recomended to work with certificates held in z/OS keystores. Working with
z/OS keystores may require system administrator priviledges and working with your z/OS security team, so
the self signed PKCS12 path is provided to assist with configuring and launching test and scratch Zowe
instances.

Use a PKCS12 certificate

When Zowe is launched details for the PKCS12 certificate used are specified in the zowe.yaml section
certificates . This contains information for the certificate name and its location, together with the

truststore location.

The two most common scenario for using a PKCS12 certtificate are where you have been given an existing
certificate and wish to configure Zowe to use it, or else you do not have a certificate and wish to generate a
new one. The zwe init certificate command supports both scenarios. The input parameters that

control certificate configuration are specified in the section zowe.setup.certificates

Create a self signed PKCS12 certificate

The following zowe.yaml example will generate:

A PKCS12 certificate, specified in zowe.setup.certificate.type

A keystore directory /global/zowe/keystore specifiedin

zowe.setup.certificate.pkcsl2.directory .

A certificate name (or alias) localhost specifiedin zowe.setup.certificate.pkcsl2.name

A certificate authority name local_ca specifiedin

zowe.setup.certificate.certificate.pkcsl2.caAlias .

To assist with updating zowe.yaml the values to generate a self signed PKCS12 certificate are included in
the section beginning # >>>> Certificate setup scenario 1 .Other certificate scenarios lower

downinthe zowe.yaml file are commented out.

The zwe init certificate command will generate a certificate based on the zowe.yaml values in

the zowe.setup.certificate section. These certificate values used at runtime are referenced in the
zowe.yanl section zowe.certificates . Specify —-update-config forthe zwe command to

update the runtime zowe.certificates section to reference the generated certificate generated from

the zowe.setup.certificate.

The follow command output shows generation of a self signed PKCS12 certificate using the default values.
Some detailed output messages have been omitted, but the flow can be viewed that creates the CA, creates
the keystore and adds the CA to it, create the certificate and adds that to the keystore, creates the
truststore, changes directory permissions to restrict access to the private key.

Because —-update-config was specified the zowe.certificates section's values are updated to
reference the newly generated certificate. These updates are logged by the zwe init certificate
command output. Open the zowe.yaml file to check the references to the newly generated certificate

values, as shown below:

When using a self-signed certificate, you will be challenged by your browser when logging in to Zowe to
accept its untrusted certificate authority. Depending on the browser you are using there are different ways to
proceed.

Manually import a certificate authority into a web browser

To avoid the browser untrusted CA challenge, you can import Zowe's certificates into the browser to avoid
untrusted network traffic challenges. For more information, see Import the local CA certificate to your

browser.

To avoid requiring each browser to trust the CA that signed the Zowe certificate, you can use a public
certificate authority such as Symantec, Comodo, Let's Encrypt, or _GoDaddy_to create a certificate. These
certificates are trusted by all browsers and most REST API clients. This option, however, requires a manual
process to request a certificate and may incur a cost payable to the publicly trusted CA.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-security#import-the-local-ca-certificate-to-your-browser

Version: v2.4.x LTS

Configuring JCERACFKS certificates in a key
ring

Zowe is able to work with certificates held in a z/OS Keyring.

The JCL member .SZWESAMP (ZWEKRING) contains the security commands to create a keyring named

ZoweKeyring and manage the certificate and certificate authoritie (CA) used by Zowe's servers to
encrypt TLS communications. The JCL contains commands for three z/OS security managers: RACF,
TopSecret, and ACF/2.

There are two ways to configure and submit ZWEKRING .

e Customize and submit the ZWEKRING JCL member.

e Customize the zowe.setup.certificate sectionin zowe.yaml andusethe zwe init

certificate command.

If youuse the zwe init certificate command this will prepare a customized JCL member using
ZWEKRING as atemplate.

A number of keytring scenarios are supported

» Creation of a local certificate authority (CA) which is used to sign a locally generated certificate, both of

which are placed into the ZoweKeyring .
e Importing an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

e Creation of a locally generated certificated and signing it with an existing certificate authority, and
placing the certificate into the key ring.

Create a certificate authority and use it to self sign a certificate

The zwe init security command takes its input from the zowe.setup.security sectionin

zowe.yaml . To help with customizing the file there are five sections in the file

Create a self signed JCERACFKS certificate

The following zowe.yaml example will generate:

A JCERACFKS certificate, specified in zowe.setup.certificate.type

A keyring named ZoweKeyring specifiedin zowe.setup.certificate.keyring.name .

A certificate with the label localhost specified in zowe.setup.certificate.keyring. label

A certificate authority with the label localca specified in

zowe.setup.certificate.keyring.calLabel withacommonname Zowe Service CA.

The follow command output shows generation of a self signed JCERACFKS certificate using the default
values. Some detailed output messages have been omitted.

When the command is run a customized JCL member name in created the CUST.JCLLIB data set. The
PDS name is defined in the zowe.setup.dataset.jcllib property. In the sample below the PDS
meember USER.ZWEV2.CUST.JCLLIB(ZW101431) is created that contains the security manager
commands and then submitted as a job ID ZWEKRING(J0B@3054) .

Even though the job ends with code 0 there may be failures in the individual steps. It is advised to check the
job output. The security manager commands in the job will be generated based on the value of
zowe.security.product , and the job steps for each product are broken apart by security manager.

Because the ——update-config parmarater was specified the runtime configuration section of

zowe.yaml is updated to match the values to the generated keystore, certificate, and certificate authority.

Version: v2.4.x LTS

Set up Zowe certificates using workflows

Zowe uses certificates that are held in z/OS Keyring.

You can use four zJOSMF workflows that enable you to manage keyring setup, certificates, certificate sign
requests and signatures, and load certificates to a keyring. Use the following workflows to set up certificates

for Zowe in your environment:
1. Set up a Zowe certificate and keyring using ZWEKRING.xml

The ZWEKRING.xml workflow sets up a Zowe certificate and keyring. The workflow helps you set up
the certificate and keyring and has the following features:

[¢]

Generates a Zowe certificate that is signed by the Zowe local CA

[¢]

Imports an existing certificate that is held in z/OS to the keyring for Zowe

[e]

Imports an external Zowe certificate from a data set in PKCS12 format

[e]

Connects a z/OSMF certificate authority to the Zowe keyring

The workflow includes the steps that you can see on the following image:

Based on the variable setup from the first step, the workflow can perform various certificate
configurations and connect certificates to a keyring in RACF, TSS, and ACF2 security systems.

2. Create a certificate sign request (CSR) using ZWECRECR.xml
The ZWECRECR.xml workflow creates a CSR request and has the following features:
o Based on a variable setup, generates a certificate sign request.
You must define variables.
o A CSRrequest is stored into a data set. Then the data set is automatically converted into a USS file.
You must specify the USS file path.

The workflow includes the steps that you can see on the following image:

Note: You can find links to the specific security systems (BCM, IBM) official documentation in the
instructions section of the workflow in related steps.

. Sign a CSR request using ZWESIGNC.xml
The ZWESIGNC.xml workflow signs a CSR request.

After the successful workflow execution, the certificate is signed by the specified certificate authority
and is stored in USS.

The workflow includes the steps that you can see on the following image:

Fill in the fields, that you can see on the following image, to sign a CSR request. Ensure that the
workflow includes the following information:

o A USS location path of the CSR file

o A USS location path where a signed certificate is stored in pem format

. Load the Signed Client Authentication Certificate into ESM using ZWELOADC.xml|

The ZWELOADC.xml workflow loads a signed client authentication certificate into a specific ESM

under your ACID.

The workflow can load ASCII- or EBCDIC-encoded certificate into a data set. Then, based on the

variable setup, the workflow loads the certificate into a specific ESM.

The workflow includes the steps that you can see on the following image:

Version: v2.4.x LTS

Creating VSAM caching service datasets

Zowe can work in a high availability (HA) configuration where multiple instances of the Zowe launcher are
started, either on the same LPAR or different LPARs connected through sysplex distributor. If you are only
running a single Zowe instance on a single LPAR you do not need to create a caching service so you may

skip this step.

In an HA setup the different Zowe API Mediation Gateway servers share the same northbound port (by
default 7554), and client traffic to this port is distributed between separate gateways that in turn dispatch
their work to different services. When any of the services individually become unavailable the work can be
routed to available services, which means that the initial northbound request will be fulfilled.

There are different storage methods that can be used as as the caching service for Zowe. One of these is

VSAM and this chapter describes how to create the data sets if you are using VSAM as your caching
service. If you are using another caching service such as redis or infinispan then you do not need to
create any VSAM files and you can skip the step described in this chapter. For more information on the
different caching services see Configuring the Caching Service for HA.

Using zwe init vsam command

The command zwe init vsam uses the template JCL in SZWESAMP (ZWECSVSM) . You can edit and
submit this yourself, or else if use zwe init vsam which will copy the source template member from
zowe.setup.mvs.hlq.SZWESAMP (ZWECVCSM) and create a target JCL member in

zowe.setup.mvs.jcllib(ZWECVSCM) with values extracted from the zowe.yaml file.
e zowe.components.caching-service.storage.vsam.name variable

This is the data set name that the ZWECSVSM JCL will create. This is used to replace all occurrences of
#dsname inthe ZWECSVSM data set.

Note: The ZWECSVSM JCL defines the key length and record length of the VSAM instance. If the key

length and record length of this JCL is changed,
zowe.environments.CACHING_STORAGE_VSAM_KEYLENGTH and
zowe.environments.CACHING_STORAGE_VSAM_RECORDLENGTH must be set to the new values.

* zowe.components.caching-service.storage.mode variable

https://docs.zowe.org/stable/user-guide/configure-caching-service-ha

This specifies whether you would like to use Record Level Sharing (RLS) for your VSAM data set. RLS

is recommended for Sysplex deployment. NONRLS is also an allowed value.

e zowe.setup.vsam.storageClass variable

If you use the RLS mode, a storage class is required.

e zowe.setup.vsam.volume variable

If you set to use the NONRLS mode, a storage volume is required.

If you want to preview the member before submitting it use the value ——security-dry-run , otherwise

the command will submit the JCL and wait for its completion.

https://www.ibm.com/support/pages/vsam-record-level-sharing-rls-overview

Version: v2.4.x LTS

Installing Zowe main started tasks

The JCL members for each of Zowe's started tasks need to be present on the JES proclib concatenation
path. The command zwe init stc will copy these from the install source location .SZWESAMP to the
targted PDS specified in the zowe.setup.dataset.proclib value USER.PROCLIB . The three proclib

member names are specified in zowe.yaml arguments.

The zwe init stc command uses the CUST.JCL LIB data sets as a staging area to contain
intermediatory JCL which are transformed version of the originals that are shiped in .SZWESAMP with
paths, PDS locations, and other runtime data updated. If you wish to just generate the CUST.JCLLIB
members without having them copied to USER.PROCLIB , specify ——security-dry-run . If the JCL

members are already in the target PROCLIB, specify ——allow-overwritten .

Here is an example:

Version: v2.4.x LTS

Installing and configuring the Zowe cross
memory server (ZWESISTC)

The Zowe cross memory server, also known as ZIS, provides privileged cross-memory services to the Zowe
Desktop and runs as an APF-authorized program. The same cross memory server can be used by multiple
Zowe desktops. The cross memory server is needed to be able to log on to the Zowe desktop and operate
its apps such as the Code Editor. If you wish to start Zowe without the desktop (for example bring up just the
API Mediation Layer), you do not need to install and configure a cross memory server and can skip this step.

To install and configure the cross memory server, you must define APF-authorized load libraries, program
properties table (PPT) entries, and a parmlib. This requires familiarity with z/OS.

e PDS sample library and PDSE load library

e |Load module
o APF authorize

o Key 4 non-swappable
e PARMLIB
e PROCLIB
e SAF configuration
e Summary of cross memory server installation
e Starting and stopping the cross memory server on z/OS

e Zowe auxiliary service
o When to configure the auxiliary service

o |Installing the auxiliary service

PDS sample library and PDSE load library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members
containing sample configuration commands are found in the SZWESAMP PDS sample library.

The load modules for the cross memory server and an auxiliary server it uses are found in the SZWEAUTH
PDSE.

» Convenience Build The location of SZWESAMP and SZWEAUTH for a convenience build depends on
the value of the zowe.setup.dataset.prefix parametersinthe zowe.yaml file usedto

configure the zwe install command, see Install the MVS data sets.

e SMPJE For an SMPJE installation, SZWESAMP and SZWEAUTH are the SMPJE target libraries whose
location depends on the value of the #th1lq placeholder in the sample member
AZWEQQ1.F1(ZWE3ALOC) .

The cross memory server is a long running server process that, by default, runs under the started task name
ZWESISTC withthe userID ZWESIUSR and group of ZWEADMIN .

The ZWESISTC started task serves the Zowe desktop that is running under the ZWESLSTC started task,
and provides it with secure services that require elevated privileges, such as supervisor state, system key, or
APF-authorization.

The user ID ZWESIUSR that is assigned to the cross memory server started tasks must have a valid OMVS
segment and read access to the load library SZWEAUTH and PARMLIB data sets. The cross memory server

loads some functions to LPA for its PC-cp services.

To install the cross memory server, enable the PROCLIB, PARMLIB, and load module. This topic describes
the steps to do this manually.

Load module

The cross memory server load module ZWESISQ0 is installed by Zowe into a PDSE SZWEAUTH . For the
cross memory server to be started, the load module needs to be APF-authorized and the program needs to
run in key(4) as non-swappable.

APF authorize

APF authorize the PDSE SZWESAUTH . This allows the SMP/E APPLY and RESTORE jobs used for applying

maintenance to be operating on the runtime PDSE itself when PTF maintenance is applied.
Do not add the SZWEAUTH data set to the system LNKLIST or LPALST concatenations.

To check whether a load library is APF-authorized, you can issue the following command:

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build#step-5-install-the-mvs-data-sets

where the value of DSNAME is the name of the SZWEAUTH data set as created during Zowe installation that
contains the ZWESIS0Q1 load module.

Issue one of the following operator commands to dynamically add the load library to the APF list (until next
IPL), where the value of DSNAME is the name of the SZWEAUTH data set, as created during Zowe

installation.

 If the load library is not SMS-managed, issue the following operator command, where volser isthe

name of the volume that holds the data set:

 If the load library is SMS-managed, issue the following operator command:

Configuring using zwe init apfauth

If you are usingthe zwe init command to configure your z/OS system, the step zwe init apfauth

can be used to generate the SETPROG commands and execute them directly. This takes the input

parameters zowe.setup.mvs.authLoadLib forthe SZWEAUTH PDS location, and
zowe.setup.mvs.authPluginLib for the location of the PDS that is used to contain plugins for the

cross memory server. For more information on zwe init apfauth see, APF Authorize Load Libraries.

Making APF auth be part of the IPL

Add one of the following lines to your active PROGxx PARMLIB member, for example
SYS1.PARMLIB(PR0OGO®) , to ensure that the APF authorization is added automatically after next IPL. The

value of DSNAME is the name of the SZWEAUTH data set, as created during Zowe installation:

* [f the load library is not SMS-managed, add the following line, where volser is the name of the

volume that holds the data set:
 If the load library is SMS-managed, add the following line:

The PDS member SZWESAMP (ZWESIMPRG) contains the SETPROG statement and PROGxx update for

reference.

Key 4 non-swappable

The cross memory server load module ZWESIS@1 must run in key 4 and be non-swappable. For the server
to start in this environment, add the following PPT entries for the server and address spaces to the SCHEDxx
member of the system PARMLIB.

https://docs.zowe.org/stable/user-guide/apf-authorize-load-library

The PDS member SZWESAMP (ZWESISCH) contains the PPT lines for reference.

Then, issue the following command to make the SCHEDxx changes effective:

PARMLIB

The ZWESISTC started task must find a valid ZWESIPxx PARMLIB member in order to be launched
successfully. The SZWESAMP PDS created at installation time contains the member ZWESIPQ@ with
default configuration values. You can copy this member to another data set, for example your system
PARMLIB data set, or else leave it in SZWESAMP .

If you choose to leave ZWESIPxx in the installation PDS SZWESAMP used at installation time, this has
advantages for SMP/E maintenance because the APPLY and RESTORE jobs will be working directly against
the runtime library.

Wherever you place the ZWESIP0® member, ensure that the data set is listed in the PARMLIB DD
statement of the started task ZWESISTC .

PROCLIB

For the cross memory server to be started, you must move the JCL PROCLIB ZWESISTC member from the
installation PDS SAMPLIB SZWESAMP into a PDS that is on the JES concatenation path.

You need to update the ZWESISTC member in the JES concatenation path with the location of the load
library that contains the load module ZWESIS@1 by editing the STEPLIB DD statement of ZWESISTC . Edit
the PARMLIB DD statement to point to the location of the PDS that contains the ZWESIP0® member.

For example, the sample JCL below shows ZWESISTC where the APF-authorized PDSE containing
ZWESISQ1 is IBMUSER.ZWEV2.SZWEAUTH(ZWESIS@1) andthe PDS PARMLIB containing ZWESIPQO is
IBMUSER. ZWEV2.SZWESAMP (ZWESIPQOQ) .

SAF configuration

Because the ZIS server makes z/OS security calls it restrits which clients are able to use it services, by
requiring them to have READ access to a security profile ZWES.IS inthe FACILITY class.

The Zowe launcher started task ZWESLSTC needs to be able to access the ZIS server, which requires that
the user ID ZWESVUSR has access to ZWES. IS . The steps to do this are desribed in Configure the cross

memory server for SAF.

Summary of cross memory server installation

You can start the cross memory server using the command /S ZWESISTC once the following steps have

been completed.

e JCL member ZWESVSTC is copied from SZWESAMP installation PDS to a PDS on the JES
concatenation path.
e The PDSE Load Library SZWEAUTH is APF-authorized, or Load module ZWESIQ@ is copied to an
existing APF Auth LoadLib.
e The JCL member ZWESVSTC DD statements are updated to point to the location of ZWESI00 and
ZWESIPOQO .

e The load module ZWESIQ0 must runin key 4 and be non-swappable by adding a PPT entry to the
SCHEDxx member of the system PARMLIB PPT PGMNAME (ZWESIQ@) KEY(4) NOSWAP .

Starting and stopping the cross memory server on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC . It
supports reusable address spaces and can be started through SDSF with the operator start command with
the REUSASID=YES keyword:

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task
manually.

To end the Zowe cross memory server process, issue the operator stop command through SDSF:
Note:

The starting and stopping of the ZWESVSTC started task for the main Zowe servers is independent of the
ZWESISTC cross memory server, which is an angel process. If you are running more than one ZWESVSTC
instance on the same LPAR, then these will be sharing the same ZWESISTC cross memory server. Stopping
ZWESISTC will affect the behavior of all Zowe servers on the same LPAR that use the same cross-memory
server name, for example ZWESIS_STD. The Zowe Cross Memory Server is designed to be a long-lived
address space. There is no requirement to recycle regularly. When the cross-memory server is started with a

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf

new version of its load module, it abandons its current load module instance in LPA and loads the updated

version.

To diagnose problems that may occur with the Zowe ZWESVSTC not being able to attach to the
ZWESISTC cross memory server, alog file zssServer-yyyy-mm—dd—hh—mm. log is created in the log
directory each time ZIS is started. More details on diagnosing errors can be found in Zowe Application

Framework issues.

Zowe auxiliary service

Under some situations in support of a Zowe extension, the cross memory server will start, control, and stop
an auxiliary address space. Thisrunas a ZWESASTC started task that runs the load module ZWESAUX .

When to configure the auxiliary service

Under normal Zowe operation, you will not see any auxiliary address spaces started. However, if you have
installed a vendor product running on top of Zowe, this may use the auxiliary service so it should be
configured to be launchable. A vendor product documentation will specify whether it needs the Zowe
auxiliary service to be configured so ensure that it is needed before attempting the configuration steps.

If you are just using core Zowe functionality, you do not need to configure the auxiliary service. Even with the
Zowe auxiliary service configured, there is no situation under which you should manually start the
ZWESASTC started task.

Installing the auxiliary service

To install the auxiliary service to allow it to run, you take similar steps to install and configure the cross
memory server as described above, but with a different JCL PROBLIC member and a different load module.
There is no PARMLIB for the auxiliary service.

e JCL member ZWESASTC is copied from SZWESAMP installation PDS to a PDS on the JES

concatenation path.

e The PDSE load library SZWEAUTH is APF-authorized, or load module ZWESAUX is copied to an existing
APF Auth LoadLib.

e The load module ZWESAUX must run in key 4 and be non-swappable by adding a PPT entry to the
SCHEDxx member of the system PARMLIB PPT PGMNAME (ZWESAUX) KEY(4) NOSWAP .

Important!

https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop

The cross memory ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the
ZWESASTC task manually.

Version: v2.4.x LTS

Zowe Auxiliary Address space

The cross memory server runs as a started task ZWESISTC that uses the load module ZWESISO1 .

In some use cases, the Zowe cross memory server has to spawn child address spaces, which are known as
auxiliary (AUX) address spaces. The auxiliary address spaces run as the started task ZWESASTC using the

load module ZWESAUX and are started, controlled, and stopped by the cross memory server.

An example of when an auxiliary address space is used is for a system service that requires supervisor state
but cannot run in cross-memory mode. The service can be run in an AUX address space which is invoked by
the Cross Memory Server acting as a proxy for unauthorized users of the service.

Do not install the Zowe auxiliary address space unless a Zowe extension product's installation guide
explicitly asks for it to be done. This will occur if the extension product requires services of Zowe that cannot
be performed by the cross memory server and an auxiliary address space needs to be started.

A default installation of Zowe does not require auxiliary address spaces to be configured.

You do not start or stop the ZWESASTC manually.

Version: v2.4.x LTS

Configure Zowe with zfOSMF Workflows

As a system programmer, after you install Zowe, you can register and execute the z/OSMF workflows in the
web interface to complete the Zowe configuration. zZOSMF helps to simplify the Zowe configuration tasks
and reduce the level of expertise that is needed for Zowe configuration.

Ensure that you meet the following requirements before you start the Zowe configuration:

 Install and configure z/OSMF

* Install Zowe with an SMPJE build, PSWI, or a convenience build
You can complete the following tasks with the z/OSMF workflow:

e Configure the Zowe instance directory
e Enable the API ML gateway
» Enable the metrics service

e Enable the API catalog

e Enable automatic discovery
e Enable a caching service

e Enable an application server
e Enable the ZSS component
e Enable the jobs API

* Enable the files API

e Enable JES Explorer

e Enable MVS Explorer

e Enable USS Explorer

You can execute the Zowe configuration workflow either from a PSWI during deployment or later from a
created software instance in z/OSMF. Alternatively, you can execute the configuration workflow z/OSMF
during the workflow registration process.

Configure the Zowe instance directory

The Zowe instance directory contains configuration data that is required to launch a Zowe runtime. This
includes port numbers, location of dependent runtime such as Java, Node, z/OSMF, as well as log files.
When Zowe is started, configuration data is read from files in the instance directory and logs will be written
to files in the instance directory. Zowe has three runtime systems: the z/OS Service microservice server, the
Zowe Application Server, and the Zowe API Mediation Layer microservices.

Register the ZWECONF.xml workflow definition file in the z/OSMF web interface to create a Zowe instance
directory and start the Zowe started task. The path to the workflow definition file is
<pathPrefix>/workflows/

After you register the workflow definition file, perform the following steps to complete the process:
1. Define variables

The workflow includes the list of instance configuration and the Zowe variables. Enter the values for
variables based on your mainframe environment, Zowe instance configuration, and wanted
components.

2. Create configuration

Execute the step to create a configuration zowe.yaml file with the variable setup that was defined in step
1.

3. Run Zowe install
Execute the zwe install command with the previously stored zowe.yaml file as a parameter.

If you receive an error message (such as RC higher than 0), ensure that you edit incorrect input values
or system setup before you re-runthe zwe install command. To overwrite changed output, edit

the step by adding the ——allow-overwritten tag to the install command.
Example: Command that re-runs the installation
4. Run Zowe init
Execute the zwe init command with the previously stored zowe.yaml file as a parameter.

Note: Messages and error codes from the subsequent JOBS command are not forwarded back to
z/OSMF.

The zwe init command is a combination of the following sub-commands that define configuration:

o muvs: Copies the data sets that are provided with Zowe to custom data sets.
o security: Creates user IDs and security manager settings.

o apfauth: APF authorizes the LOADLIB that contains the modules that perform priviledged security
calls on z/OS.

o certificate: Configures Zowe to use TLS certificates.
o vsam: Configures the VSAM files that help run the Zowe caching service for high availability (HA)

o stc: Configures the system to launch the Zowe started task.

If you execute the init step again, either manually delete failed artifacts that are created from previous
init steps or edit the step by adding the ——allow-overwritten tag to the init command.

Example: Command that re-runs init

After you execute each step, the step is marked as complete. After completing the workflow execution, you
can view the Zowe started task.

Execute the configuration workflow
You can use the following methods to execute the configuration workflow:

e Directly from a PSWI during deployment
e From a deployed software instance (Sl)

e From the Workflows tab in the z/OSMF web Ul

Execute workflow from PSWI

In the PSWI deployment phase, you are presented with the checklist that helps guide you during the
deployment process.

The perform workflows step enables you to run either all attached workflows or just the mandatory one —
the post-deployment workflow for mounting.

Execute workflow from software instance

Software instance is created after PSWI deployment is complete. Execute a workflow from an SI.

Follow these steps:
1. Log in to z/OSMF.
2. Select the Software Management panel.
3. In the displayed table, select Software Instances.

4. Select the checkbox next to the Software Instance Name column for the instance you want to execute
the workflow against.

5. Select the Perform Workflows option from the Actions menu.
The Software Management Software Instances Perform Workflows dialog opens.
6. Select the Create Workflow option from the Actions menu.
7. In the displayed table, click on the name of the workflow you want to execute.
8. Click OK.
The Workflows tab with the previously selected workflow opens.
9. Execute the workflow steps.

You have successfully executed a workflow from a software instance.

Register and execute workflow in the z/OSMF web
interface

z/OSMF workflow simplifies the procedure to configure and start Zowe. Execute the following steps to
register and execute the workflow in the z/OSMF web interface:

1. Log in to the z/OSMF web interface and select Use Desktop Interface.
2. Select the Workflows File.
3. Select Create Workflow from the Actions menu.

The Create Workflow panel appears.

4. Enter the complete USS path to the workflow you want to register in the Workflow Definition File field.

o If you installed Zowe with the SMPJE build, the workflow is located in the SMPJE target zFS file
system that was mounted during the installation.

o (Optional) Enter the complete USS path to the edited workflow properties file in the Workflow
Variable Input File field. Use this file to customize product instances and automate workflow
execution, saving time and effort when deploying multiple standardized Zowe instances. The
values from this file override the default values for the workflow variables.

The sample properties file is located in the same directory with the workflow definition file. Create a
copy of this file, and then modify as described in the file. Set the field to the path where the new file
is located.

Note: If you use the convenience build, the workflows and variable input files are located in the
USS runtime folder in files/workflows.

5. Select the System where the workflow runs.

6. Select Next.

7. Specify a unique Workflow name.

8. Select or enter an Owner user ID, and select Assign all steps to owner user ID.
9. Select Finish.

The workflow is registered in zJOSMF. The workflow is available for execution to deploy and configure
the Zowe instance.

10. Perform the following steps to execute each step individually:
a. Double-click the title of the step.
b. Select the Perform tab.
c. Review the step contents and update the input values.
d. Select Next.

Repeat the previous two steps to complete all items until the Finish option is available.

11. Select Finish.

After you execute each step, the step is marked as Complete. The workflow is executed.

Version: v2.4.x LTS

Using the Configuration Manager

When you install the Zowe™ server components on z/OS, a utility called configmgr or "Configuration
Manager" is bundled within. It can be used directly in a few ways, or leveraged by the zwe command to

empower it with several abilities and even performance enhancements.

The purpose of Configuration Manager is to deliver unified, validated configuration data to programs without
requiring the programs to know where the configuration is stored or prove that the configuration is valid.
This reduces the burden on each Zowe component to support different data storage types such as both
datasets AND files, and also ensures that all Zowe components have sufficient configuration validation to
avoid silent or hard-to-troubleshoot errors.

Using zwe with Configuration Manager

Starting in Zowe version 2.3, the zwe command can use configmgr to gain several abilities and even
performance enhancements. This is designed to be non-disruptive, with no changes needed to Zowe
Components that are v2 conformant. The biggest change is that enabling Configuration Manager mode
enforces strict validation of Zowe configuration. This is helpful to ensure there's no configuration problems
and even helps pinpoint issues, but if you previously had silent issues in your configuration, enabling this
may reveal them.

To enable Configuration Manager mode, you can either set zowe.useConfigmgr=true inyour Zowe
configuration file, or you can add the ——configmgr flagtoa zwe command you are using. Not all zwe

operations support Configuration Manager yet, but many do and eventually all will.

Validation error reporting

Configuration Manager will not let Zowe servers start unless the configuration passes validation when
checking it against the Zowe configuration schema. This gives a degree of assurance that the servers will
not encounter issues due to typographical errors or missing required fields. It also avoids silent errors where
a field might be an integer rather than a string.

When a validation error occurs, the command you ran will end with output that shows what and where the

error was.

Example

Consider the following Zowe configuration section about certificates:

In the example, the certificate type PCKS12 does not exist. It is a typo. Without schema validation, the

servers might start and then crash due to the typo.
With the schema file, you can see that there are only two choices for certificate types:

The type can either be PKCS12 or JCERACFKS . This allows you to not only detect this error but also see

the options available.

When zwe runs and fails schema validation due to the "PCKS12" typo, it will print out the following

message:

This output shows that type has anissue. You can read the enum to see the choices before restarting

Zowe.

JSON-Schema validation

Configuration Manager uses JSON Schema to validate a configuration. As a result, Zowe itself and all
components and extensions must have schema files for Configuration Manager to perform validation.
Developers should read how to add schemas to components as it is required in v2.

Zowe now publishes these schema files so that you can see all the configuration properties that are possible
in Zowe, see how they have changed between versions, and see what values are valid for them. Below is a
list of some of these schemas:

Github
Component Name Purpose .
Link
Base server-base Validates zowe.yaml except components section link
Base server-common Common structures reusable by other schemas link
server-
Base component- Validates each components' manifest.yaml link

manifest

https://json-schema.org/
https://docs.zowe.org/stable/user-guide/extend/server-schemas
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/zowe-yaml-schema.json
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/server-common.json
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/manifest-schema.json

Github

Component Name Purpose .
Link
trivial-
Base component- For copying as a starting point for developers link
schema
appfw-plugin- Validates any components' pluginDefinition.json for)
app-server o : link
definition zwe components install
app-server component Validates components.app-server link
discovery component Validates components.discovery link
gateway component Validates components.gateway link
Zss component Validates components.zss link
explorer-ip component Trivially validates components.explorer-ip link

From the GitHub links above, if you want to see changes between versions, you can compare by the GitHub
tags.

Splitting configuration into multiple files

When zwe is using Configuration Manager, the CONFIG= parameter in the z/OS ZWESLSTC JCL and the
——config parameterinany zwe command that supports ——configmgr can take a list of YAML file

locations as an alternative to the backward-compatible single YAML file used in prior Zowe versions.

When using a single unix file, the syntax is just the path to the file, such as CONFIG=/my/zowe.yaml .

However, when using multiple files, you must use the syntax FILE(filel):FILE(file2):... where

each file is surrounded with FILE() and files are separated by the colon : character. The use of
FILE() will allow Zowe to support other types of storage in the future. An example of using multiple

configuration files would be as follows:

Each file in the list you provide must adhere to the same Zowe configuration schema, but the contents can
be any subset you want per file. Zowe will merge together the contents of all the files into one unified

https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/trivial-component-schema.json
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json
https://github.com/zowe/api-layer/blob/v2.x.x/schemas/discovery-schema.json
https://github.com/zowe/api-layer/blob/v2.x.x/schemas/gateway-schema.json
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zowe-schema.json
https://github.com/zowe/explorer-ip/blob/v2.x/master/schemas/trivial-schema.json

configuration, so the collection of files must result in a configuration which is valid against the Zowe schema.

Schema validation occurs upon the merged result, not the individual files. There are a few reasons you may
want to split your Zowe configuration into multiple files, such as:

e Having a Zowe configuration file that is very small and containing only what is not the default
configuration of Zowe, and then running Zowe with 2 configuration files: Your customizations, and the
Zowe default such as CONFIG=FILE(/home/me/zowe-

customizations.yaml):FILE(/global/zowe/example-zowe.yaml)

» Splitting the Zowe configuration among administrators with certain responsibilities. You could have a file
about the z/OSMF configuration, a file about the Java configuration, and so on. An example of this could
look like CONFIG=FILE(/home/me/zowe-customizations.yaml):FILE(/global/org/zosmf-
zowe.yaml) :FILE(/global/org/java-zowe.yaml) :FILE(/global/zowe/example-
zowe.yaml)

Note: When specifying many files, you may reach the line length limit in your STC JCL. The default JCL
contains _CEE_ENVFILE_CONTINUATION=\ to allow you to continue the CONFIG parameter to multiple

lines. An example of this is as follows:

When you use multiple files, Zowe constructs the unified configuration by having the files listed on the left
override the values of files to their right in the list. This means the left-most file's values take priority, and the
right-most file should be treated as a set of defaults. Here is an example of Splitting configuration into
multiple files:

Configuration templates

Each Zowe configuration file provided to Zowe when using Configuration Manager can contain values which
are templates. These templates are not the literal values of a parameter, but will be substituted for a real
value by Configuration Manager. This allows you to simplify complex or tedious configuration such as:

e Replacing occurrences of the same path in the configuration with templates that reference that path.
Instead of needing to update every occurrence of a path when it changes, you would only need to
update it once.

e Having a value that is linked to another, such as that you may only want the gateway component to be
enabled when the discovery component is enabled.

e Having a value that is derived from multiple other values, such as a URL that has many parts.

e Having a value that is a set of multiple conditions, having many fallback behaviors so that your
configuration is valid for many environments.

Templates are resolved after merging files, but before schema validation occurs, so you can split up your
configuration into multiple files and template them however you'd like if the merged, resolved result is valid
against the Zowe configuration schema.

To make a template, you use the syntax ${{ assignment }} in which there must be a space after ${{
and before }} . The assignment can be a ECMAScript 2020 statement, such as a JSON path or a

conditional. Here are some examples of templates that you can use to simplify your configuration:

Configuration Manager unix executable

configmgr is afile located within <zowe.runtimeDirectory>/bin/utils inthe Zowe server
component runtime for z/OS. If you run it with no arguments, it prints a help command that details what you
cando withit. configmgr commands focus on providing input files and schemas, and then providing

output such as validation success or printing the configuration.
The configmgr executable needs the following as input:

* A list of configuration locations. Each location can be a different type such as a unix file or parmlib from
a dataset, but each must be YAML format. Every configuration object in the list must only contain data
from the same schema because the list will be merged together into a single configuration object during
processing. The rules and syntax are the same as seen inthe config property of the Using zwe

with Configuration Manager section.

e A list of json-schema unix files separated by a colon : , with the top-level schema being the left-most
in the list. The unified configuration will be validated against this top-level schema and any references in
the other schema files in the list.

The configmgr executable can do the following with the input:

e Report whether the configuration is valid against the schema. If invalid, a reason will be printed to help
pinpoint issues.

e Validate and then output a list of environment variables in the syntax used by Zowe components that
use environment variables to consume Zowe configuration.

* Validate and then output a specific property of the configuration when given a JSON path to the
property desired.

The configmgr binary does not need to be used for Zowe configuration and Zowe schemas alone. It can
validate any YAML against any json-schema. However, its environment variable output list is in the Zowe
format.

Version: v2.4.x LTS

Overview

Zowe has high availability feature built-in. This doc guides you through the configuration steps to enable this
feature.

Enable high availability when Zowe runs in Sysplex

» Sysplex is required to make sure multiple Zowe instances can work together. Check Configuring Sysplex
for high availability for more details.

e 7/OSMF is an optional prerequisite of Zowe. If your Zowe instance works with z/OSMF, it's
recommended to configure z/OSMF for high availability in Sysplex.

e The halInstances section must be defined in the Zowe YAML configuration. Check Zowe YAML

Configuration File Reference for more details.

e Zowe caching service is required to convert stateful component to stateless component. Check
Configuring the Caching Service for HA for details.

Known limitations

* To allow Sysplex Distributor to route traffic to the Gateway, you can only start one Gateway in each
LPAR within the Sysplex. All Gateways instances should be started on the same port configured on
Sysplex Distributor.

» Zowe App Server should be accessed through the Gateway with a URL like https://<dvipa-

domain>:<external-port>/zlux/ui/vl .

Enable high availability when Zowe runs in Kubernetes

If you deploy Zowe into Kubernetes, all components can also achieve high availability if you enable more
than one replicas for each component.

e HorizontalPodAutoscaler is recommanded to let Kubernetes scales the component based on
workdload.

e PodDisruptionBudget is recommended to let Kubernetes automatically handles disruptions like
upgrade.

https://docs.zowe.org/stable/user-guide/zowe-ha-overview/configure-sysplex
https://docs.zowe.org/stable/user-guide/zowe-ha-overview/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/zowe-ha-overview/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/zowe-ha-overview/k8s-config#horizontalpodautoscaler
https://docs.zowe.org/stable/user-guide/zowe-ha-overview/k8s-config#poddisruptionbudget

Version: v2.4.x LTS

Configuring Sysplex for high availability

To deploy Zowe high availability, you must set up the Parallel Sysplex® environment. A Parallel Sysplex is a
collection of z/OS® systems that cooperatively use certain hardware and software components to achieve a
high-availability workload processing environment.

Sysplex environment requirements
Zowe high availability instances require a Sysplex environment that consists of the following:
e One or more central processor complexes (CPCs) that can attach to a coupling facility
e At least one coupling facility
e At least one Sysplex timer
» Connection to shared DASD
e Shared SAF database, see Sharing a database with sysplex communication in data sharing mode

» Sysplex Distributor with configured Dynamic VIPA TCP/IP address, see Configuring Sysplex Distributor
for instructions

* VSAM record-level sharing (RLS), see Preparing for VSAM record-level sharing
e USS Shared file system, see How to share file systems in a Sysplex

e JESPlex/JES2 Multi-Access Spool (MAS) environment

e z/OSMF high availability, see Configuring z/OSMF high availability in Sysplex

e Node.js v14.x (except v14.17.2), or v16.x

Note: It is highly recommended that Node.js installed on a shared file system.

Configuring Sysplex Distributor

https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=sharing-preparing-vsam-record-level
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha

The following example DVIPA configuration ensures the availability of Zowe in Hot-Standby mode. For
example, suppose that you have a Sysplex of two z/OS systems: A, B.

1. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

o TIPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA
o TIPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

2. Define a DVIPA for both systems:

where,

o

X.X.X.A is the home address for SYSA.

o x.X.X.Bis the home address for SYSB.

o Xx.x.X.V is Dynamic VIP Address.

o 7554 is the port number of you Zowe APl Mediation Layer Gateway. This should be the same port

number you configured for zowe.externalPort in zowe.yaml . See Zowe YAML

configuration file reference to learn more about zowe.yaml .

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic
dynamic VIPA takeover to occur, if needed.

All Zowe instances are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the
preferred Zowe instance, SYSA receives all new incoming requests. If SYSA fails, new work requests to Zowe
are routed to the server on SYSB. When SYSA resumes normal operations, new work requests for Zowe are
routed to SYSA again. This is the default behavior because the AUTOSWITCHBACK parameter of the

VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can
specify the NOAUTOSWITCHBACK parameter forthe VIPADISTRIBUTE statement.

https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration

Version: v2.4.x LTS

Configuring zJOSMF for high availability in
Sysplex

z/OSMF high availability (HA) should be configured in Hot Standby mode to ensure availability of REST
services. The goal of this configuration is to ensure that one z/JOSMF server is always available to provide the
REST services.

In Hot Standby mode, there is at least one backup (hot-standby) server and a preferred target server. Both
targets are active, and both z/OSMF servers are bound to the DVIPA. The preferred z/OSMF server receives
all new incoming requests. When the preferred z/OSMF server fails or the system becomes down, new
requests are routed to the backup (hot-standby) server. The distributing DVIPA does not perform load
balancing of requests across multiple systems. For more information, read the following articles in IBM
Documentation:

e Configuring z/OSMF for availability
e Configuring z/OSMF for high availability

Sysplex environment requirements

Before you begin, ensure that the Sysplex environment meets the following requirements for z/7OSMF REST

services:

e Shared SAF database. See Sharing a database with sysplex communication in data sharing mode in IBM

Documentation.
e USS Shared file system. See How to share file systems in a Sysplex in IBM Documentation.
e JESPlex/JES2 Multi-Access Spool (MAS) environment
» Sysplex distributor, configured Dynamic VIPA TCP/IP address
e Extended MCS console (EMCS)

Setting up z/OSMF nucleus

This information is intended for a first-time z/OSMF setup. Follow these high-level steps to create a
z/OSMF nucleus on your system.

https://www.ibm.com/docs/en/zos/2.2.0?topic=environment-configuring-zosmf-availability
https://www.ibm.com/docs/en/zos/2.4.0?topic=configurations-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex

For detailed information about each step, see Create a zZOSMF nucleus on your system in IBM

Documentation.

1. Create the z/OSMF security authorizations by running the sample JCL SYS1.SAMPLIB(IZUSEC).

z/OSMF security authorizations will be used by all zZOSMF servers across multiple systems.

. Create a shared file system per z/OSMF server by running the sample JCL SYS1.SAMPLIB(IZUMKFS).

It holds configuration settings and the persistence data.

. Copy the Sample Parmlib Member SYS1.SAMPLIB(IZUPRMO0O) to PARMLIB and modify it according to

requirements of z/OSMF HA parmlib member in Sysplex. Each system uses a different IZUPRMxx
member. For example, IZUPRMOA and IZUPRMOB.

. Copy the following z/OSMF procedures from SYS1.PROCLIB into your JES concatenation:

o [ZUSVR1 (Each z/OSMF server should use the different started procedure. For example, IZUSVRA
and IZUSVRB.)

o IZUANG1
o IZUFPROC

. Define different STARTED profiles for zZJOSMF servers.

Requirements of zJOSMF HA parmlib member in Sysplex

AUTOSTART_GROUP, more than one z/OSMF server (independent z/JOSMF instances) is to be
autostarted in a Sysplex. For instance, System A will autostart a server and similarly, System B will
autostart the second z/OSMF server.

z/OSMF has a default autostart group (IZUDFLT) which is used in monoplex or single z/OS image. To
have more z/OSMF servers autostarted in a Sysplex, you must associate each server and the systems it
serves with a unique autostart group name. For example, AUTOSTART_GROUP('IZUDFLA') for
System A and AUTOSTART_GROUP('IZUDFLB') for System B

AUTOSTART(LOCAL) should be used by all zZJOSMF instances.
HOSTNAME, the DVIPA address will be used as the z/OSMF host name for all instances.
HTTP_SSL_PORT, all servers are listening on the same port.

KEYRING_NAME, all servers should use the same key ring such as IZUKeyring.IZUDFLT .

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.izua300/izulite_CreateTheNucleus.htm

e SERVER_PROC, each z/OSMF server should use the different started procedure. For example, IZUSVRA
and IZUSVRB.

e ANGEL_PROQOC, all zJOSMF servers can connect to the same z/OSMF angel process such as IZUANG1.
* SAF _PREFIX, they should use the same SAF profile prefix such as IZUDFLT.

e USER_DIR, each instance uses a shared file system with a unique mount point for each AUTOSTART
group that be automatically started. For example, /global/zosmf/zosmfa and

/global/zosmf/zosmfb .

Configuring zfOSMF for high availability

The following DVIPA configuration ensures the availability of zZOSMF for Hot-Standby. For example, suppose
that you have a Sysplex of two z/OS systems: A, B.

1. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

o TIPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA
o TIPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

2. Define a dynamic VIPA (DVIPA) for both systems:
where,

o X.X.X.A is the home address for SYSA.
o X.X.X.Bis the home address for SYSB.

o X.x.X.V is Dynamic VIP Address.

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic

dynamic VIPA takeover to occur, if needed.

Both z/OSMF servers are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the
preferred zJOSMF server, SYSA receives all new incoming requests. If SYSA fails, new work requests for
z/OSMF are routed to the server on SYSB. When SYSA resumes normal operations, new work requests for
z/OSMF are routed to SYSA again. This is the default behavior because the AUTOSWITCHBACK parameter

of the VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can
specify the NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

Version: v2.4.x LTS

Configuring the Caching Service for HA

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. If you
are runnning the caching service on z/OS there are three storage methods: inMemory , infinispan or

VSAM . If you are running the caching service off platform, such as a linux or windows container image, it is

also possible to specify redis or infinispan .
To learn more about Caching Service, see Using the Caching Service.
For users

e inMemory

This storage method is designed for quick start of the service and should be used only for single
instance scenario and development or test purpose. Do not use it in production or high availability

scenario.

To use this method, set the zowe.components.caching-service.storage.mode valueto
inMemory inthe zowe.yaml configuration file. When this method is enabled, the Caching Service

will not persist any data.
e VSAM
To use this method,

i. Set the value of zowe.components.caching-service.storage.mode valueto VSAM inthe

zowe.yaml configuration file.

ii. Create a VSAM data set. See Initialize VSAM data set for instructions. There are two ways to create
the data set, either using the JCL member SZWESAMP (ZWECVSEM) where the data set name is

defined in the #dsname variable.

iii. In zowe.yaml , configure zowe.components.caching-sevice.storage.vsam.name with
the VSAM data set name. If in step 2 you used zwe init vsam to create the VSAM data set

then the values will already be set.

e redis

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-caching-service
https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset

Redis is not available if you are running the APl Mediation Layer on z/OS under unix system services. Its
usage is for when the APIML is running off platform, such as in a linux or windows container as part of a
hybrid cloud deployment.

To enable this method, set the value of zowe.components.caching-service.storage.mode to
redis inthe zowe.yaml configuration file. There are a number of values to control the redis nodes,
sentinel and ssl properties that will need to be set inthe zowe.yaml file. For more information on

these properties and their values see Redis configuration.
infinispan

Infinispan is designed to be run mainly on z/OS since it offers good performance. To enable this
method, set the value of zowe.components.caching-service.storage.mode to infinispan
inthe zowe.yaml configuration file. Infinispan environment variables are not currently following the v2
naming convention, so they must be defined into zowe.environments section. For more information

on these properties and their values see Infinispan configuration.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis#redis-configuration
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration

Version: v2.4.x LTS

Starting and stopping Zowe

Zowe consists 3 main started tasks:

e ZWESLSTC as Zowe main started task,
e ZWESISTC as Zowe Cross memory server

e and ZWESASTC as Zowe cross memory auxiliary server.

Starting and stopping the cross memory server ZWESISTC
on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC . It
supports reusable address spaces and can be started through SDSF with the operator start command with
the REUSASID=YES keyword:

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task
manually.

To end the Zowe cross memory server process, issue the operator stop command through SDSF:
Note:

The starting and stopping of the ZWESLSTC started task for the main Zowe servers is independent of the
ZWESISTC cross memory server, which is an angel process. If you are running more than one ZWESLSTC
instance on the same LPAR, then these will be sharing the same ZWESISTC cross memory server. Stopping
ZWESISTC will affect the behavior of all Zowe servers on the same LPAR that use the same cross-memory
server name, for example ZWESIS_STD . The Zowe Cross Memory Server is designed to be a long-lived
address space. There is no requirement to recycle regularly. When the cross-memory server is started with a
new version of its load module, it abandons its current load module instance in LPA and loads the updated

version.

Starting and stopping the cross memory auxiliary server
ZWESASTC on z/OS

This is handled automatically by Zowe cross memory server. You don't need to manually start or stop this
started task.

Starting and stopping Zowe main server ZWESLSTC on z/OS
with zwe server command

Zowe ships zwe start and zwe stop commands to help you start and stop Zowe main server.

To start Zowe, run zwe start ——-config /path/to/my/zowe.yaml command. It willissue S
command to Zowe ZWESLSTC .

Here is an example:
Job name ZWE1SV can be customized with zowe. job.name inyour Zowe configuration file.

You canuse zwe start command to start a Zowe high availability instance defined on other LPAR within
the Sysplex. For example, zwe start —-config /path/to/my/zowe.yaml —-—ha-instance

hainst2 . This requires these information be defined in Zowe configuration file:
zwe start command willuse ROUTE commandtosend S ZWESLSTC commandto LPAR2 system.

To stop Zowe, run zwe stop —-config /path/to/my/zowe.yaml command. It will issue P

command to Zowe job.

Here is an example:

Starting and stopping Zowe main server ZWESLSTC on z/OS
manually

To start Zowe main server, you canissue S ZWESLSTC command. Same as normal JES S command, you
can customize JOBNAME . For example, S ZWESLSTC, JOBNAME=ZWE1SV .

If you have Zowe high availability instance defined and want to start a specific HA instance, for example
myinstl , you can pass with HAINST parameter. Here is an example: S
ZWESLSTC,HAINST=myinst1,JOBNAME=ZWE1SV1 . Zowe high availability instance name is case
insensitive. HAINST=myinst1l and HAINST=MYINST1 are same.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop

If you are starting Zowe high availability instance for another LPAR in the Sysplex, you can use ROUTE
command to route the S command to the target system. For example, I'm working on SYSNAME LPAR1
and want to start HA instance myinst2 on LPAR2 , youcanissue RO LPAR2,S
ZWESLSTC,HAINST=myinst2, JOBNAME=ZWE1SV2 .

To stop Zowe main server, you canissue P <jobname> command.

CAUTION

With Zowe version 1, you canissue C command to stop Zowe main server. This is not supported in
version 2 anymore. A P command is required to make sure Zowe components can be shuted down

properly.

Stopping and starting a Zowe component without restarting
Zowe main server

You can restart a Zowe component with JES modify command without restarting the whole Zowe main
server. You need to know these information before issuing the modify command:

e Your Zowe main server job name. By default, it is configured as ZWE1SV . You can find your customized

value by checking zowe. job.name defined in Zowe configuration file.

e The component name you want to stop or start. You can find a full list of installed components by listing
<RUNTIME>/components directory and Zowe extension directory.

To stop a running Zowe component, issue F <zowe—job>,APPL=STOP(<component—name>) command.

For example, if you want to stop app-server ,issue F ZWE1SV,APPL=STOP(app-server) .

To start a stopped Zowe component, issue F <zowe-job>,APPL=START (<component—-name>)
command. For example, if you want to start app-server ,issue F ZWE1SV, APPL=START (app-
server) .

Note, please be aware that not all components can be restarted with this method. Some components may
rely on another and you may need to restart affected components as well.

Version: v2.4.x LTS

Verifying Zowe installation on z/OS

After the Zowe™ started task ZWESLSTC is running, follow the instructions in the following sections to
verify that the components are functional.

e Verifying Zowe Application Framework installation
e Verifying APl Mediation installation

e Verifying z/OS Services installation

Note: Not all components may have been started. Which components have been started depends on your
setting of the component enabled status in Zowe configuration file (usually zowe.yaml). If you set

enabled tobe true for gateway, discovery and api-catalog , the APl Mediation Layer and
z/OS Services are started. If you set enabled tobe true for app-server and zss , the Zowe
Application Framework (also known as Zowe desktop) are started. Those using containerization may only
have ZSS started. For more information, see reference of YAML configurations - components.

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported
browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort
where,
* myHost is the host on which you installed the Zowe Application Server.

e httpsPort is the port number value components.app-server.port in zowe.yaml . For more
information, see Configure component app-server.

For example, if the Zowe Application Server runs on host myhost and the port number that is assigned
to components.app-server.port is 12345, you specify https://myhost:12345 . The web
desktop uses page direct to the actual initial page which is

https://myhost:12345/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html . If the
redirect fails, try the full URL.

https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#yaml-configurations---components
https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#configure-component-app-server

If the desktop appears but you are unable to log on, check Cannot log into the Zowe desktop for
troubleshooting tips.

Verifying APl Mediation installation

Use your preferred REST API client to review the value of the status variable of the API Catalog service that
is routed through the API Gateway using the following URL:

where,

e myHost is the host on which you installed the Zowe API Mediation Layer.

e httpsPort is the port number value zowe.externalPort in zowe.yaml . For more information, see

Domain and port to access Zowe.
Example:

The following example illustrates how to use the curl utility to invoke API Mediation Layer endpoint and the
grep utility to parse out the response status variable value

The response UP confirms that APl Mediation Layer is installed and is running properly.

Verifying z/OS Services installation

Zowe z/OS services usually are registered with Zowe APIML Discovery and exposed with certain service url
like /<service>/api/vl.

Here we give an example of verifying jobs—api shipped with Zowe. Please be aware that jobs—-api is

not enabled by default if you created your Zowe configuration file from example-zowe.yaml . To enable
jobs-api , you need to set components.jobs—-api.enabled tobe true and restart Zowe. You can

verify the installation of jobs—api service from an internet browser by entering the following case-

sensitive URL:
where,

gatewayPort isthe port number that is assigned to zowe.externalPort inthe zowe.yaml file used

to launch Zowe. For more information, see Domain and port to access Zowe.

https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop
https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe
https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe

The above link should prompt you to login. After you input correct user name and password of your target
z/OS system, you should see JSON format data of all jobs running on the system.

Version: v2.4.x LTS

Introduction

Zowe (server) containers are available for download as an alternative to running Zowe servers on z/OS
through the Zowe convenience and SMPJE builds. You can choose the appropriate installation type for your
use case. There are several advantages of using containers wherein you can:

Run Zowe servers on other platforms including Linux on Z and your PC

Run Zowe servers local to your system for rapid development

Run redundant copies of servers for scaling capacity to meet workload requirements

e Leverage container monitoring tools
If you are new to containers, you can learn about the concepts from the Kubernetes website.

The Zowe containers are designed to be run together with extensions and Zowe utilities and therefore are
built for orchestration software that can manage the relationship and lifecycle of the containers. The
following topics guide you to set up and use Zowe's containers with the Kubernetes orchestration software.

1. Prerequisites

2. Downloading and installing

3. Configuring the Zowe container environment
4. Starting, stopping, and monitoring

5. Known limitations

Known limitations

* You may encounter an issue that some plugins are not showing up in Zowe Desktop. You can try
Refresh Applications icon showing up in Desktop start menu.

* You may encounter an issue that some services are not showing up in Zowe API Catalog. You can try
Refresh Static APIs button showing up in top-right corner of API Catalog web page.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.zowe.org/stable/user-guide/k8s-prereqs
https://docs.zowe.org/stable/user-guide/k8s-downloading
https://docs.zowe.org/stable/user-guide/k8s-config
https://docs.zowe.org/stable/user-guide/k8s-using

Version: v2.4.x LTS

Prerequisites

Before you install the Zowe server container, make sure that you have the required software and
environments.

e Zowe installed on z/OS for users of ZSS and ZIS (default when you use the Zowe Application
Framework app-server , the Zowe Desktop, or products that are based on them)

» z/OSMF installed on z/OS for users of it (default when you use gateway , APl Mediation Layer, Web

Explorers, or products that are based on them)
e A container runtime, such as:

o Docker
o CRI-O

o containerd

e Kubernetes Cluster software
e kubectl, for initial setup and management of the cluster

Note: This documentation uses container terminology that may be explained within the Kubernetes
Glossary.

Kubernetes cluster
The Zowe containerization solution is compatible with Kubernetes v1.19+ or OpenShift v4.6+.
You can prepare a Kubernetes cluster based on your requirements in many different ways.

e For development purposes, you can set up a Kubernetes cluster on your local computer in one of the
following ways:

o Enable Kubernetes shipped with Docker Desktop

o Set up minikube

Attention! You must make sure that the Kubernetes cluster you have created has a minimum RAM of
3GB in order for Zowe to start.

https://docs.zowe.org/stable/user-guide/install-zos
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://docs.docker.com/desktop/kubernetes/
https://minikube.sigs.k8s.io/docs/start/

e For production purposes, you can set up a Kubernetes cluster in one of the following ways:

o Bootstrap your own cluster by following instructions in Installing Kubernetes with deployment tools
in the Kubernetes documentation.

o Provision a Kubernetes cluster from popular Cloud vendors:

Amazon Elastic Kubernetes Service

Microsoft Azure Kubernetes Service

IBM Cloud Kubernetes Service

Google Cloud Kubernetes Engine

kubectl tool

You need kubectl CLlItool installed on your local computer where you want to manage the Kubernetes

cluster. For instructions on how to install the kubectl tool, see Install Tools in the Kubernetes documentation.

https://kubernetes.io/docs/setup/production-environment/tools/
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://www.ibm.com/ca-en/cloud/kubernetes-service
https://cloud.google.com/kubernetes-engine
https://kubernetes.io/docs/tasks/tools/

Version: v2.4.x LTS

Downloading and installing

Learn how to download and install Zowe's containers.

Downloading
You can download Zowe's containers in one of the following ways:

* Downloading configuration samples
e Downloading container images
Downloading configuration samples

The easiest way to install and run Zowe's containers is by using the configuration samples that are provided
on Zowe's website. If you don't already have these samples, you can download them by completing the
following tasks:

1. Download Zowe containerization build from zowe.org.
2. Extract the compressed file to the system where you will run the Zowe containers.
3. Find the samples within the extracted folder kubernetes .

Downloading container images

Downloading Zowe's container images manually is not required because this can be done automatically
when applying a Kubernetes deployment configuration.

If wanted, you can download Zowe's container images manually by using the docker pull commands.
This allows you to get an image from a registry or attach an image that you have downloaded directly. You
can find Zowe's container images in https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe:

* Registry: zowe-docker-release.jfrog.io

e Organization: ompzowe
Full image addresses include,

e zowe-docker-release.jfrog.io/ompzowe/gateway—service: latest-ubuntu

https://www.zowe.org/download.html
https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe

e zowe-docker-release.jfrog.io/ompzowe/app—-server: latest—ubuntu

* zowe-docker-release.jfrog.io/ompzowe/explorer—jes: latest-ubuntu
Therefore, you can download these manually with the docker pull commands. For example,

docker pull zowe-docker-release.jfrog.io/ompzowe/app-server: latest—-ubuntu

Installing

You do not need to install the Zowe containers if you use Zowe's Kubernetes configuration samples. By
default, these sample configurations will pull Zowe component images from the public Zowe docker release
registry zowe-docker-release.jfrog.io directly and then start them. Your Kubernetes nodes require

an Internet connection that can reach this registry.

An image could be considered "installed" when it is findable by Kubernetes. Just like downloading, this is
done automatically by Kubernetes but commands such as docker pull or docker load

accomplishes the same task.

Upgrading

Upgrade is an automatic process when you apply Kubernetes deployment configuration. The configuration
files tell Kubernetes to automatically download the latest version of Zowe. Here, latest is the keyword for
constantly updated version. For example zowe-docker-release.jfrog.io/ompzowe/gateway-

service: latest—ubuntu .

Note: Automatic upgrades can fail if you have changed the workload configuration files to use a specific
Zowe version. In that case, you must enter the latest version manually in the configuration file such as
zowe—-docker-release. jfrog.io/ompzowe/gateway-service:2.0.0-ubuntu .

If your Kubernetes nodes do not have an Internet connection, you can follow the instruction of the previous
step to manually pull all images into all your Kubernetes nodes. After you have done this, you need to modify
all occurrences of imagePullPolicy: Always inthe sample configurations and replace them with

imagePullPolicy: Never before applying them.

Version: v2.4.x LTS

Configuring

Zowe provides sample configurations that make it easy for you to run Zowe in Kubernetes. You can use them

directly or as a reference.

You can customize the configuration or make your own. If you do so, note the following objects that are

expected by the container deployments:

Kind Name
Namespace zowe
ServiceAccount zZowe-sa
ConfigMap zowe

certificates-cm

zowe-
Secret certificates-
secret
discovery-
Ingress .
ingress
gateway-
Ingress .
ingress
Route discovery
Route gateway
) discovery-
Service]
service
) gateway-
Service

service

Note

Contains zowe-certificates.env with the same

format as seen on z/OS keystore

Contains the base64 PEM and P12 data for keystore and
truststore

Used for external access to the Discovery service

Used for external access to the Gateway service

Used for external access to the Discovery service

Used for external access to the Gateway service

Used for internal or external access to the Discovery

service

Used for external access to the Gateway service

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

Kind Name Note

) catalog-)

Service) Used for access to the Catalog service
service
zZowe-

PersistentVolumeClaim workspace-
pvc

HorizontalPodAutoscaler = * Autoscalers exist for the various pods

PodDisruptionBudget * Disruption budgets exist for the various pods

To configure the Zowe container environment, complete the following procedure.

1. Create namespace and service account

Run the following commands to create Zowe's Namespace zowe with Service Account zowe-sa .

Note that by default, zowe-sa service account has automountServiceAccountToken disabled for

security purposes.
To verify, check the following configurations.
e kubectl get namespaces should show a Namespace zowe .
This displays the default Namespace zowe, if not set.
e kubectl get serviceaccounts ——namespace zowe should show a ServiceAccount zowe-sa .

This displays the default ServiceAccount zowe-sa, if not set.

2. Create Persistent Volume Claim (PVC)

Zowe's PVC has a default StorageClass value that may not apply to all Kubernetes clusters. Check and
customize the storageClassName value of samples/workspace—-pvc.yaml as needed. You can use

kubectl get sc to confirm which StorageClass you can use.

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

After you customize the storageClassName value, apply the result by issuing the following commands:

To verify, run the following commands and check if the STATUS of line item zowe-workspace-pvc

shows as Bound .

IMPORTANT, zowe-workspace-pvc PersistentVolumeClaim must be declared in access mode

ReadWriteMany to allow the workspace be shared by all Zowe components.

In some Kubernetes environment, you may need to define PeristentVolume and define volumeName

in PersistentVolumeClaim instead of defining storageClassName . Please consult your Kubernetes

administrator to confirm the appropriate way for your environment. This is an example to configure
PersistentVolumeClaim with pre-configured zowe-workspace-pv PeristentVolume .

3. Create and modify ConfigMaps and Secrets

Similarly, to run Zowe services on z/OS, you can use the Zowe zowe.yaml configuration file to customize

Zowe in Kubernetes.

You can modify samples/config-cm.yaml and samples/certificates—-secret.yaml directly. Or
more conveniently, if you have Zowe ZSS/ZIS running on z/OS, the Kubernetes environment can reuse
instance and keystore configuration from that installation. Ensure that the verify certificate setting of your
existing keystore configuration is set to STRICT mode. Otherwise, update your zowe.yaml configuration

file to change the settingto STRICT mode and generate a new set of certificates.

If you want to manually create, or later customize the ConfigMaps and Secrets, see Customizing or manually
creating ConfigMaps and Secrets for details.

To create and modify ConfigMaps and Secrets by using the migrate configuration script, complete the
following steps:

a. To make Zowe v2 certificates work in Kubernetes, in your zowe.yaml (in runtime directory), you need

to:
e set zowe.verifyCertificate to STRICT mode.
e set zowe.setup.certificate.pkcsl2.caAlias . Defaultaliasis local_ca .

* set zowe.setup.certificate.pkcsl12.caPassword . Default CA password is

local_ca_password .

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

* make sure the certificate that you are using have defined the following domains in certificate Subject Alt
Name (SAN):

[e]

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster
o *x,<k8s—-namespace>.svc.<k8s-cluster—-name>

o *x,discovery-service.<k8s—-namespace>.svc.<k8s-cluster—-name>

o *x,gateway-service.<k8s—namespace>.svc.<k8s-cluster—-name>

o *,<k8s—namespace>.pod.<k8s-cluster—name>

where,

o <k8s—-namespace> is the Kubernetes Namespace you installed Zowe into

o <k8s-cluster—-name> is the Kubernetes cluster name, which usually should be
cluster. local . Note that the following command will automatically add the k8s internal
domain into SAN.

Next, on z/OS, run the following command:
For more detailed explaination of zwe migrate command parameters, see zwe migrate for kubernetes.

As a result, it displays ConfigMaps zowe—config and Secrets (zowe-certificates—secret)
Kubernetes objects which are based on the Zowe instance and keystore used. The content looks similar to

samples/config-cm.yaml and samples/certificates—secret.yaml but with real values.

b. Follow the instructions in the script output to copy the output and save it as a YAML file configs.yaml

on your computer where you manage Kubernetes.
c. Apply the file into Kubernetes:
d. Remove the previously saved configs.yaml file from all systems for security.
To verify:
* Kkubectl get configmaps —-—namespace zowe
This command must display the two ConfigMaps zowe-config and zowe-certificates—cm.
e Kkubectl get secrets ——namespace zowe

This command must display a Secret zowe-certificates-secret .

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

4.Expose APl Mediation Layer components
This step makes Zowe's Gateway, Discovery, and API Catalog servers available over a network.

The Gateway is always required to be externally accessible, and depending upon your environment the
Discovery service may also need to be externally accessible.

The actions you need to take in this step vary depending upon your Kubernetes cluster configuration. If you
are uncertain about this section, please contact your Kubernetes administrator or the Zowe community.

4a. Create service

You can set up either a LoadBalancer or NodePort type Service.

Note: Because NodePort cannot be used together with NetworkPolicies , LoadBalancer and

Ingress is preferred configuration option.

Review the following table for steps you may take depending on the Kubernetes provider you use. If you
don't need additional setups, you can skip steps 4b, 4c¢ and jump directly to the Apply zowe section.

Kubernetes) - .
. Service Additional setups required
provider
o LoadBalancer or Port Forward (on next section Starting, stopping, and
minikube

NodePort monitoring)

docker-desktop

bare-metal

cloud-vendors

OpenShift

LoadBalancer

LoadBalancer or
NodePort

LoadBalancer

LoadBalancer or
NodePort

Defining api-catalog service

none

Create Ingress

none

Create Route

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.zowe.org/stable/user-guide/k8s-using

api-catalog-service isrequired by Zowe, but not necessarily exposed to external users. Therefore,

api-catalog-service isdefinedastype ClusterIP .
To define this service, run the command:
Upon success, you should see the following output:

Then, you can proceed with creating the Gateway and Discovery services according to your environment.

Applying Gateway Service

If using LoadBalancer , run the command:

Orif using NodePort instead, first check spec.ports[@].nodePort as this will be the port to be
exposed to external. In this case, the default gateway port is not 7554 but 32554. You will need to use
https://<your-k8s—node>:32554/ to access APIML Gateway. To apply NodePort type gateway-

service , run the following command:

To verify either case, run the following command and check that the command displays the service
gateway-service .

Applying Discovery service

Exposing the Discovery service is only required when there is a Zowe service or extension which needs to be
registered to the APl Mediation Layer but is running outside of Kubernetes, such as on z/OS. Otherwise, the
discovery service can remain accessible only within the Kubernetes environment.

Optional: To set up the discovery service without exposing it externally, edit samples/discovery-
service-1lb.yaml if using LoadBalancer type services, or samples/discovery-service-
np.yaml if using NodePort type services. In either file, specify ClusterIP as the type, replacing the

NodePort or LoadBalancer value.
To enable the service externally when using LoadBalancer services, run the command:

Orif using NodePort instead, first check spec.ports[@].nodePort as this will be the port to be
exposed to external. In this case, the default discovery port is not 7553 but 32553. And you will need to use
https://<your-k8s—node>:32553/ to access APIML Discovery. To apply NodePort type

discovery-service , run the following command:

To verify either case, run the following command and check that this command displays the service

discovery-service :
kubectl get services —-—namespace zowe

Upon completion of all the preceding steps in this a. Create service section, you may need to run additional
setups. Refer to "Additional setups required" in the table. If you don't need additional setups, you can skip
4b, 4c, 4d, and jump directly to Apply Zowe section.

4b. Create Ingress (Bare-metal)

An Ingress gives Services externally-reachable URLs and may provide other abilities such as traffic load
balancing.

To create Ingress, perform the following steps:

a. Edit samples/gateway-ingress.yaml and samples/discovery-ingress.yaml before applying
them, by uncommenting the lines (19 and 20) for defining spec.rules[@].host and http: , andthen
commenting out the line below, — http:

b. Run the following commands:
To verify, run the following commands:
kubectl get ingresses ——namespace zowe
This command must display two Ingresses gateway-ingress and discovery-ingress .

Upon completion, you can finish the setup by applying zowe and starting it.

4c. Create Route (OpenShift)

If you are using OpenShift and choose to use LoadBalancer services, you may already have an external
IP for the service. You can use that external IP to access Zowe APIML Gateway. To verify your service
external IP, run:

If you see an IP inthe EXTERNAL-IP column, that means your OpenShift is properly configured and can
provision external IP for you. If you see <pending> and it does not change after waiting for a while, that

means you may not be able to use LoadBalancer services with your current configuration. Try

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.zowe.org/stable/user-guide/k8s-config/k8s-using

ClusterIP services and define Route . A Route is a way to expose a service by giving it an externally

reachable hostname.
To create a route, perform the following steps:

a. Check and set the value of spec.port.targetPort in samples/gateway-route.yaml and

samples/discovery-route.yaml before applying the changes.
b. Run the following commands:
To verify, run the following commands:
oc get routes —--namespace zowe
This command must display the two Services gateway and discovery .

Upon completion, you can finish the setup by applying zowe and starting it.

Customizing or manually creating ConfigMaps and
Secrets

The z/OS to k8s convert tool can automatically create a config map and secret. However, if you want to
customize or create your own, review the instructions in this section.

To make certificates work in Kubernetes, make sure the certificate you are using have defined the following
domains in certificate Subject Alt Name (SAN):

» your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s—namespace>.svc.<k8s-cluster-name>
e x.discovery-service.<k8s—namespace>.svc.<k8s-cluster—-name>

e x.gateway-service.<k8s—-namespace>.svc.<k8s-cluster—-name>

*.<k8s—-namespace>.pod.<k8s-cluster-name>

<k8s—-namespace> is the Kubernetes Namespace you installed Zowe into. And <k8s-cluster—-name>

is the Kubernetes cluster name, which usually should be cluster. local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.zowe.org/stable/user-guide/k8s-config/k8s-using

CAUTION

It's not recommended to disable zowe.verifyCertificates .

Notes: When the following conditions are true, this migration script will regenerate a new set of certificates
for you with proper domain names listed above.

* Youuse zwe init command to initialize Zowe
* Youuse PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

e You did not define zowe.setup.certificate.pkcsl2.import.keystore andlet zwe

command to generate PKCS12 keystore for you

e Youenabled STRICT mode zowe.verifyCertificates

To manually create the ConfigMaps and Secrets used by Zowe containers, you must create the following
objects:

1. A ConfigMap, with values based upon a Zowe configuration zowe.yaml and similar to the example

samples/config—cm.yaml with the following differences to the values seen on a z/OS installation:

o zowe.setup and halnstances are not needed for Zowe running in Kubernetes and will be

ignored. You can remove them.
°o java.home and node.home are notusually needed if you are using Zowe base images.
o zowe.runtimeDirectory must be setto /home/zowe/runtime .
o zowe.externalDomains is suggested to define as a list of domains you are using to access
your Kubernetes cluster.
o zowe.externalPort must be the port you expose to end-user. This value is optional if it's same
as default APIML Gateway service port 7554 . With default settings,
» jf youchoose LoadBalancer gateway-service , thisvalue is optional, or setto 7554 ,
= if you choose NodePort gateway-service and access the service directly, this value
should be same as spec.ports[0].nodePort with default value 32554 ,
» if youchoose NodePort gateway-service and access the service through port
forwarding, the value should be the forwarded port you set.
o components.discovery.replicas should be setto same value of spec.replicas defined
in workloads/discovery-statefulset.yaml .

o All components running in Kubernetes should use default ports:
» components.api-catalog.port is 7552,

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

= components.discovery.port is 7553,

* components.gateway.port is 7554 ,

= components.caching-service.port is 7555,
= components.jobs—api.port is 7600 ,

= components.files—api.port is 7559,

= components.app-server.port is 7556 .

o components.caching-service.storage.mode should NOT be setto VSAM . redis is
suggested. Follow Redis configuration documentation to customize other Redis related variables.
Leave the value to empty for debugging purposes.

o Must append and customize these 2 values into zowe.environments section:
= ZWED_agent_host=<ZOWE_Z0S_HOST>

= ZWED_agent_https_port=<ZOWE_ZSS_SERVER_PORT>

2. A Secret, with values based upon a Zowe keystore's files, and similar to the example
samples/certificates—-secret.yaml.

You need 2 entries under the data section:

o keystore.pl2 : whichis base64 encoded PKCS#12 keystore,
o truststore.pl2 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

o keystore.key :isthe PEM format of certificate private key,
o Kkeystore.cer :isthe PEM format of the certificate,

o ca.cer :isthe PEM format of the certificate authority.

PodDisruptionBudget

Zowe provides optional PodDisruptionBudget which can provide high availability during upgrade. By
default, Zowe defines minAvailable tobe 1 forall deployments. This configuration is optional but

recommended. To apply PodDisruptionBudget , run this command:
To verify this step, run:

This should show you a list of PodDisruptionBudget like this:

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis/#redis-configuration

HorizontalPodAutoscaler

Zowe provides optional HorizontalPodAutoscaler which can automatically scale Zowe components
based on resource usage. By default, each workload has a minimum of 1 replica and a maximum of 3to 5
replicas based on CPU usage. This configuration is optional but recommended.
HorizontalPodAutoscaler relies on Kubernetes Metrics server monitoring to provide metrics through
the Metrics API. To learn how to deploy the metrics-server, see the metrics-server documentation. Please
adjust the HorizontalPodAutoscaler definitions based on your cluster resources, then run this

command to apply them to your cluster:
To verify this step, run:

This should show you a list of HorizontalPodAutoscaler like this:

Kubernetes v1.21+

If you have Kubernetes v1.21+, several optional changes are recommended based on Deprecated API
Migration Guide.

e Kind CronJob :change apiVersion: batch/vlbetal to apiVersion: batch/v1l on
workloads/zowe-yaml/cleanup—static—definitions—-cronjob.yaml and
workloads/instance-env/cleanup-static-definitions—-cronjob.yaml . apiVersion:
batch/vlbetal will stop working on Kubernetes v1.25.

e Kind PodDisruptionBudget :change apiVersion: policy/vlbetal to apiVersion:
policy/v1l onallfilesin samples/pod-disruption-budget/ . apiVersion:

policy/vlbetal will stop working on Kubernetes v1.25.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://github.com/kubernetes-sigs/metrics-server#deployment
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Version: v2.4.x LTS

Starting, stopping, and monitoring

After Zowe's containers are installed and configured, you can refer to the following topics that help you
manage your installation.

Starting Zowe containers

The Kubernetes cluster will automatically start as many containers as needed per service according to the
Deployment configuration.

To apply the deployment files, run this command:

Port forwarding (for minikube only)

Kubectl port-forward allows you to access and interact with internal Kubernetes cluster processes from your
localhost. For debugging or development, you might want to port forward to make Zowe gateway or
discovery service available externally quickly.

Before issuing port forward commands, make sure that gateway and discovery services pods are running.
You canrun kubectl get pods -n zowe and check if the STATUS of both discovery—x and

gateway—x is RUNNING . If not, you may have to wait.
Once both STATUS shows RUNNING , run the following command to port forward:

The & sign at the command will run the command as a background process. Otherwise, the port forward

process will occupy the terminal indefinitely until canceled as a foreground service.

Verifying Zowe containers
The containers will start soon after applying the deployments.
To verify:

1. kubectl get deployments ——namespace zowe

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

This command must show you a list of deployments including explorer—jes , gateway-service ,
app-server , etc. Each deployment should show 1/1 in READY column. It could take a moment

before all deployments say 1/1 .
2. kubectl get statefulsets ——namespace zowe

This command must show you a StatefulSet discovery which READY column shouldbe 1/1 .
3. kubectl get cronjobs —--namespace zowe

This command must show you a CronJob cleanup-static—-definitions which SUSPEND should
be False .

Monitoring Zowe containers

You can monitor Zowe containers using a Ul or CLI.

Monitoring Zowe containers via Ul

Kubernetes provides a container that allows you to manage your cluster through a web browser. When using
Docker Desktop, it is already installed in the namespace kubernetes—-dashboard . See the Kubernetes

website for install instructions.

Metrics Server is also recommended and is required if you want to define Horizontal Pod Autoscaler. Check
if you have metrics—server Service in kube-system namespace with this command kubectl
get services ——-namespace kube-system . If you don't have it, you can follow this Installation

instruction to install it.

Monitoring Zowe containers via CLI

kubectl allows you to see the status of any kind of object with the get command. This applies to the

table in the configuring section but also for the pods that run the Zowe containers.
Here are a few commands you can use to monitor your environment:

* kubectl get pods —-n zowe lists the status of the components of Zowe.

* kubectl describe pods -n zowe <podid> can see more details about each pod.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-sigs/metrics-server#installation

e kubectl logs -n zowe <podid> will show you the terminal output of a particular pod, with —f
allowing you to keep the logs open as new messages are added.

* kubectl get nodes -n zowe -owide will tell you more about the environment you're running.

Stopping, pausing or removing Zowe containers

To temporarily stop a component, locate the Deployment component and scale downto @ . For example,
if you want to stop the jobs—api container, run this command:

You can later re-enable a component by scaling the component back to 1 or more.

If you want to permanently remove a component, you can delete the component Deployment . To use
jobs—api asanexample, run this command:

Version: v2.4.x LTS

Installation checklist

The following checklists summarize the required steps for a base installation (first-time installation) in the
order you should perform them.

The checklist includes a brief description of the steps, with links to the comprehensive information required
for the installation. The checklist also identifies the roles that are typically required to complete the step,
which enables the pre-installation planning team (systems administrator, DevOps architect, application
developer, and so on) to focus on the tasks for which they are responsible.

Use the Status column to track your progress.

For a printable version of this checklist, click here.

Addressing the prerequisites

To plan your Zowe CLlI installation, review the following checklist.

Lo Time
Step Description Role . Status
Estimate
Review the Systems administrator,
Zowe CLI Learn about various Zowe CLI application developer, 25 h
. rs
information topics systems programmer,
roadmap DevOps architect
) Read about new features and .
Review the) . Systems administrator, .25
enhancements included with)
release notes) DevOps architect hours
this release of Zowe CLI
Install the client-side and
Address the host-side software, and o See
)) o Systems administrator
requirements ensure that there is sufficient Note-1

free disk space

https://docs.zowe.org/stable/Zowe_CLI_Installation_Checklist.xlsx
https://docs.zowe.org/stable/user-guide/user-roadmap-zowe-cli
https://docs.zowe.org/stable/getting-started/overview
https://docs.zowe.org/stable/user-guide/systemrequirements-cli

Step

(Optional)
Install API
Mediation Layer

Install z/OSMF

Determine the
profile types
that you want
to use

Description

Install the Zowe Runtime,
which includes API Mediation
Layer

Follow the steps to install

z/OSMF

Learn about configuration and
how to use team profiles

Role

Systems administrator

Systems administrator

Systems administrator,
DevOps architect

Time
. Status
Estimate

8 hrs

See
Note-2

.25 hrs

Note-1: Allow .25 hours to install the client-side software. The amount of time to install the host-side

software depends upon your site's implementation. For example, do you require z/OSMF, REST APIs, or

both, to support the Mediation Layer? See the information for the specific server-side software that you

require to determine how much time to allow for complete server-side installation and configuration.

Note-2: Allow 15 to 25 hours to install and configure z/OSMF. The length of time varies depending on the

External Security Manager (ESM) that you are running in your site.

You are now ready to install Zowe CLI!

Installing Zowe CLI

To install Zowe CLI, review the following checklist.

Step

Install Install Zowe CLI from an online registry or a local

Description

Zowe CLI package

Role

administrator

Systems

Time
. Status
Estimate

b hrs

https://docs.zowe.org/stable/user-guide/install-zos
https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-setting-up-zosmf-first-time
https://docs.zowe.org/stable/user-guide/cli-using-using-profiles
https://docs.zowe.org/stable/user-guide/cli-installcli

Step

Install
Zowe CLI
(quick
start)

(Optional)
Install
Zowe CLI
plug-ins

Description

Use the Quick Start method if you possess
prerequisite knowledge of command line tools
and writing scripts, and you want to get started
with Zowe CLI quickly and easily.

Install Zowe CLI plug-ins from an online registry
or a local package.

You are now ready to configure Zowe CLI!

Configuring Zowe CLI

To configure Zowe CLI, review the following checklist.

Step

Configure
environment

variables

Configure
Zowe profiles

Configure
daemon

mode

Description

Learn how to store configuration
options that are common to your
environment.

Role

Systems
administrator

Systems

administrator

Role

Systems administrator,
DevOps architect,
application developer

Systems administrator,

Learn how to configure Zowe

DevOps architect,

team profiles and user profiles.

application developer

Learn how to configure Zowe CLI
to run as persistent background
process (daemon).

Systems administrator,
DevOps architect,
application developer

Time
. Status
Estimate

.25 hrs

.25 hrs

Time
. Status
Estimate

.25 hrs

.25 hrs

.25 hrs

https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/user-guide/cli-installplugins
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-using-profiles
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

Version: v2.4.x LTS

Information roadmap for Zowe CLI

This roadmap outlines the information resources that are available for all user roles who are interested in
Zowe CLI. These resources provide information about various subject areas, such as learning basic skills,
installation, developing, and troubleshooting for Zowe CLI.

The following definition of skill levels about Zowe will help you gather most relevant resources for you.

e Beginner: You're starting out and want to learn the fundamentals.
e Intermediate: You have some experience but want to learn more in-depth skills.

e Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals

Zowe skill level: Beginner

e Zowe CLI overview

New to Zowe CLI? This overview topic introduces what is Zowe CLI.
* Architecture

Review the Zowe architecture to understand how Zowe CLI works in the Zowe framework.
e Zowe CLI FAQs

If you have a question, it's a good idea to try the FAQ, which answers the most commonly asked
questions about Zowe CLI.

Quick start

Zowe skill level: Beginner

e Zowe CLI quick start

https://docs.zowe.org/stable/getting-started/overview#zowe-cli
https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://docs.zowe.org/stable/getting-started/zowe_faq#zowe-cli-faq
https://docs.zowe.org/stable/getting-started/cli-getting-started

Get started with Zowe CLI quickly and easily.
* Blog: Getting Started with Zowe CLI

This blog enables you to get started with Zowe CLI quickly.

Installing

Zowe skill level: Beginner

» System requirements

Review this topic to ensure that your system meets the requirements for installing Zowe CLI.

* Installing Zowe CLI

Follow the steps to install a new release of Zowe CLI.

Configuring and updating
Zowe sKill level: Intermediate

» Configuring Zowe CLI environment variables

Explains how to configure Zowe CLI environment variables, such as changing log levels, setting the
home directory location, and daemon mode.

e Updating Zowe CLI

Learn how to update Zowe CLI to a more recent version using different methods.

Using Zowe CLI and plug-ins

Zowe skill level: Intermediate

https://medium.com/zowe/getting-started-with-zowe-cli-7a29420c6be7
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-installcli
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-updatingcli

e Using Zowe CLI

Learn about how to use Zowe CLI, including connecting to the mainframe, managing profiles,
integrating with API Mediation Layer, and more.

* Zowe CLI extensions and plug-ins

This information guides you to explore the extensions and plug-ins available to Zowe CLI and install
plug-ins to extend the capabilities of Zowe CLI. Plug-ins add functionality to the product in the form of
new command groups, actions, objects, and options.

* Docs: Zowe CLI command reference guide

View detailed documentation on commands, actions, and options in Zowe CLI. The reference document
is based on the @zowe-v2-1ts version of the CLI.

The content also contains the web help for all Zowe ecosystem-conformant plug-ins that contributed to
this website.

You can read an interactive online version, download a PDF document, or download a ZIP file containing
the HTML for the online version:

o Browse online
o Download CLI reference in PDF format

o Download CLI reference in ZIP format

* Best practices

Are you looking for recommendations and tips on how to best use Zowe CLI to meet your needs? These
resources provide best practices recommendations.

o Blog: Zowe CLI Tips & Tricks

e Zowe CLI and TSO commands

This blog shows how to configure and use the TSO command feature of Zowe.

Developing a Zowe CLI plug-in

https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/zowe_web_help.zip
https://medium.com/modern-mainframe/zowe-cli-tips-tricks-79607b8dbd4e
https://medium.com/zowe/zowe-ci-and-tso-commands-14e5445fca1e

Zowe skill level: Advanced

Zowe CLI extenders can build plug-ins that provide new commands.
* Developing for the CLI
Learn about developing for Zowe CLI.
e Zowe CLI core repository
If you want to start working with the code immediately, check out this code repository.
e Tutorials

Follow these tutorials to get started working with a sample plug-in.

Contributing to Zowe CLI

Zowe skill level: Advanced

e Contributing guidelines

This document is a summary of conventions and best practices for development within Zowe CLI or
development of Zowe CLI plug-ins. The guidelines contain critical information about working with the
code, running, writing, and maintaining automated tests, developing consistent syntax in your plug-in,
and ensuring that your plug-in integrates with Zowe CLI properly.

e Conformance Program

This topic introduces the Zowe Conformance Program. Conformance provides Independent Software
Vendors (ISVs), System Integrators (Sls), and end users greater confidence that their software will
behave as expected. As vendors, you are invited to submit conformance testing results for review and
approval by the Open Mainframe Project. If your company provides software based on Zowe CLI, you
are encouraged to get certified today.

* Blog: Zowe Conformance Program Explained

This blog describes the Conformance Program in more details.

https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://github.com/zowe/zowe-cli
https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#tutorials
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://docs.zowe.org/stable/extend/zowe-conformance-program
https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea

Troubleshooting and support

e Troubleshooting Zowe CLI

Learn about the tools and techniques that are available to help you troubleshoot and resolve problems.
You can also find a list of common issues about Zowe CLI.

e Submit anissue

If you have an issue that is specific to Zowe CLI, you can submit an issue against the zowe-cli
repository on GitHub.

Community resources
e Slack channel

Join the #zowe-cli Slack channel to ask questions about Zowe CLI, propose new ideas, and interact
with the Zowe community.

e Zowe CLI squad meetings

Join Zowe CLI squad meetings to get involved.
e Zowe CLI Blogs on Medium

Read a series of blogs about Zowe CLI on Medium to explore use cases, best practices, and more.
e Community Forums

Look for discussion on Zowe topics on the Open Mainframe Project Community Forums.

https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli
https://github.com/zowe/zowe-cli/issues/new
https://openmainframeproject.slack.com/
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://medium.com/zowe/search?q=Zowe%20CLI
https://community.openmainframeproject.org/c/zowe

Version: v2.4.x LTS

System requirements

Before installing Zowe CLI, ensure that your environment meets the prerequisites that are described in this
article.

Client-side requirements

Zowe CLI is supported on Windows, Linux, and Mac operating systems. Meet the following requirements
before you install the CLI:

* Node.js: Install a currently supported version of Node.js LTS. For a complete list of supported LTS
versions, see Nodejs Releases.

Note: You might need to restart the command prompt after installing Node.js. Issue the following
command to verify that Node.js is installed.

Important! If you are installing Zowe CLI with Node.js 16 on a Windows operating system, see Installing
Zowe CLI with Node.js 16 on Windows.

e npm: Install a version of Node Package Manager (npm) that is compatible with your version of Node.js.

npm is included with most Node.js installations. Issue the following command to determine your
currently installed version of npm.

See Node.js release matrix to verify that the versions are compatible.

Important! If you are running npm version 8.11.0 or 8.12.0 and you are installing Zowe CLIon a
computer that cannot access the Internet or has restricted Internet access, your Zowe CLI installation
appears to complete successfully. However, when you issue Zowe commands that access the secure
credential store, the commands return error messages. To circumvent this problem, install npm 8.12.1 or
later on your computer. If you cannot upgrade to 8.12.1 or later, see Zowe Commands Fail with Secure
Credential Errors in Known Zowe CLI issues.

» Secure Credential Store: On Linux systems, you must install the packages gnome-keyring and

libsecret (or libsecret-1-@ on Debian and Ubuntu).

https://nodejs.org/en/
https://nodejs.org/en/about/releases/
https://docs.zowe.org/stable/user-guide/cli-install-cli-nodejs-windows
https://nodejs.org/en/download/releases/
https://docs.zowe.org/stable/troubleshoot/cli/known-cli

Note: For information about how to configure Secure Credential Store on headless Linux and z/Linux,
see Configure Secure Credential Store on headless Linux operating systems.

* Plug-in client requirements: If you plan to install plug-ins, review the Software requirements for CLI

plug-ins.

Important! Ensure that you meet the client-side requirements for the IBM Db2 plug-in before you
install it.

Host-side requirements
Zowe CLI requires the following mainframe configuration:

» IBM z/OSMF configured and running: You do not need to install the full Zowe solution to install and
use Zowe CLI. Minimally, an instance of IBM z/OSMF must be running on the mainframe before you can
issue Zowe CLI commands successfully. zZJOSMF enables the core capabilities, such as retrieving data
sets, executing TSO commands, submitting jobs, and more. If Zowe API Mediation Layer (API ML) is
configured and running, Zowe CLI users can choose to connect to API ML rather than to every separate
service.

* Plug-in services configured and running: Plug-ins communicate with various mainframe services.
The services must be configured and running on the mainframe before issuing plug-in commands. For
example, the IMS plug-in requires an instance of IBM IMS on the mainframe with IMS Connect (REST
services) running. For more information, see Software requirements for CLI plug-ins

e Zowe CLI on z/OS is not supported: Zowe CLI can be installed on an IBM z/OS environment and run
under Unix System Services (USS). However, the IBM Db2 plug-in cannot run on z/OS due to native
code requirements. As such, Zowe CLI is not supported on z/OS and is currently experimental.

Free disk space

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space
consumed might vary depending on your operating system, the plug-ins that you install, and the user
profiles that are saved to disk.

https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

Version: v2.4.x LTS

Installing Zowe CLI

Install Zowe™ CLI on your computer.

If your role is that of a systems administrator or you are familiar with command-line tools and want to get
started using Zowe CLI quickly, see Zowe CLI quick start. You can learn about new CLI features in the

Release notes.

After you install Zowe CLI and Zowe CLI plug-ins using your preferred installation method, see Using CLI to
learn about how to connect Zowe CLI to the mainframe, create Zowe CLI profiles and team profiles, integrate
Zowe CLI with API ML, enable daemon mode, and much, much more!

Installation guidelines

To install CLI on Windows, Mac, and Linux operating systems, follow the steps in Install Zowe CLI from npm

or Install Zowe CLI from a local package.

However, to install Zowe CLI on z/Linux, z/OS UNIX System Services (USS), or on an operating system
where the Secure Credential Store is not required or cannot be installed, use the following installation

guidelines:

» Toinstall Zowe CLI on a z/Linux operating system and you require the Secure Credential Store:
i. Follow the steps in Configure Secure Credential Store on headless Linux operating systems.
ii. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.
» Toinstall Zowe CLI on a z/Linux operating system and you do not require the Secure Credential Store:
i. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.
ii. Follow the steps in Configure Zowe CLI on operating systems where the Secure Credential Store is
not available.
» Toinstall Zowe CLI on a USS system or on an operating system where you cannot install the Secure

Credential Store:
i. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

ii. Follow the steps in Configure Zowe CLI on operating systems where the Secure Credential Store is

not available.

Installation notes

https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/getting-started/release-notes/v2_1_0
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-configure-cli-on-os-where-scs-unavailable
https://docs.zowe.org/stable/user-guide/cli-configure-cli-on-os-where-scs-unavailable

e As you are installing Zowe CLI, you might encounter error messages that relate to cpu-features and
ssh . You can safely ignore error messages of this type; the installation completes successfully. This

behavior can occur when you install CLI from npm and from a local package.

Prerequisites

* Meet the software requirements for Zowe CLI.

* Meet the software requirements for each plug-in.

Prerequisite notes

 If you are installing Zowe CLI on a computer that is running Node.js 16 on a Windows operating system,
see Installing Zowe CLI with Node.js 16 on Windows.

e If you are running NPM version 7 (npm@7) or NPM version 8 (npm@8) on a Windows operating

system, ensure that your computer is connected to the Internet.
Issue the following command before you install Zowe CLI:

* Linux users might need to prepend sudo to npm commands. For more information, see

Troubleshooting Zowe CLI.

Install Zowe CLI from npm
Use the following procedure to install Zowe CLI from an npm registry:
1. To install or update the core CLI, open a command-line window:
Zowe CLlI is installed.

2. (Optional) Address the Software requirements for CLI plug-ins. You can install most plug-ins without
meeting the requirements. However, the plug-ins will not function until you configure the back-end
APIs. The IBM Db2 plug-in requires additional configuration to install.

3. (Optional) To install all available plug-ins to Zowe CLlI, issue the following command:

Zowe CLl is installed on your computer. Issue the zowe ——help command to view a list of available

commands. For information about how to connect the CLI to the mainframe, create profiles, integrate with

https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-install-cli-nodejs-windows
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

API ML, and more, see Using Zowe CLI.

Install Zowe CLI from a local package
Use the following procedure to install Zowe CLI from a local package:
1. Meet the prerequisites for installing Zowe CLI.
2. Navigate to Download Zowe and click the Zowe vNext CLI Core button.
3. Read the End User License Agreement for Zowe and click | agree to download the core package.

zowe—-cli-package-next-2022MMDD. zip is downloaded to your computer (where MMDD
indicates the month and day of the build).

4. (Optional) Meet the prerequisites for installing Zowe CLI plug-ins.

5. (Optional) Navigate to Download Zowe and click the Zowe vNext CLI Plugins button to download the
plugins.

6. (Optional) Read the End User License Agreement for Zowe plug-ins and click I agree to download the
plugins package.

zowe—-cli-plugins—-next-2022MMDD. zip is downloaded to your computer (where MMDD

indicates the month and day of the build).

7. Unzip the contents of zowe-cli-package—next-2021MMDD.zip (and optionally zowe-cli-
plugins-2021MMDD. zip) to a working directory.

8. To install Zowe CLI Core, open a command-line window and issue the following commands to the
working directory that you used in Step 7:

Note: If an EACCESS error displays, see Resolving EACCESS permissions errors when installing

packages globally in the npm documentation.

9. (Optional) To install Zowe CLI plug-ins, issue the following command to the working directory that you
used in Step 7:

Zowe CLI and the optional plug-ins are installed on your computer. Issue the zowe —--help command to

view a list of available commands. For information about how to connect the CLI to the mainframe, create

https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://www.zowe.org/download.html
https://www.zowe.org/download.html
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

profiles and team profiles, integrate with API ML, enable daemon mode, and more, see Using CLI.

https://docs.zowe.org/stable/user-guide/cli-using-usingcli

Version: v2.4.x LTS

Configuring Secure Credential Store on
headless Linux operating systems

Perform the following configurations on headless and z/Linux operating systems.

Headless Linux requirements

e Ensure that you installed the Secure Credential Store requirements that are described in System
Requirements.

e Unlock the Gnome keyring to allow you to load and store credentials on headless Linux operating
systems. You can unlock the keyring manually or automatically.

Note: On z/Linux operating systems, complete the steps in Configuring z/Linux before you continue.

Unlocking the keyring manually

Issue the following commands to unlock the keyring manually. You must unlock the keyring in each user

session.

Note: The gnome-keyring-daemon -r ——unlock ——components=secrets prompts you to specify a

password. Press Ctr1+D twice after you specify the password.

Unlocking the keyring automatically

When you are using SSH or TTY to log in to Linux, you can configure the Gnome keyring to unlock
automatically when you log in.

Note: The following steps were tested on CentOS, SUSE, and Ubuntu operating systems. The steps do not
work on WSL (Windows Subsystem for Linux) because it bypasses TTY login. Results may vary on other
Linux distributions.

Follow these steps:
1. Install the PAM module for Ghome keyring. The package name depends on your distribution:

o gnome-keyring—pam : CentOS, Fedora, SUSE

https://docs.zowe.org/stable/user-guide/systemrequirements-cli

o libpam—-gnome-keyring : Debian, Ubuntu

2. Apply the following edits to the files /etc/pam.d/login (for TTY login), and /etc/pam.d/sshd if
it exists (for SSH login).

o Add the following statement to the end of the auth section:
o Add the following statement to end of the session section:

3. Add the following statements to ~/.bashrc . The statement lets you launch DBus, which the Gnome

keyring requires. Also the statement lets the keyring daemon start so that it is ready to be used by Zowe
CLI commands.

4. Start the Gnome keyring daemon:
5. Restart your computer.

Issue a Zowe CLI command that uses secure credentials to test that automatic unlock of the keyring
works.

Configuring z/Linux

The Secure Credential Store (SCS) does not contain the native, pre-built binaries that are required to access
the credential vault on z/Linux operating systems.

Because the credential manager is now a built-in function of Zowe CLI, developers must build the credential
mananger binaries on z/Linux systems during the Zowe CLI installation process.

The following steps describe how to install and build the credential store binaries on z/Linux (Red Hat
Enterprise Linux (RHEL) and Ubuntu) systems.

1. Install the following Linux packages on the z/Linux system:

o make

o gcc-c++ (sometimes available as g++)

o gnome-keyring

o libsecret (sometimes available as libsecret-1-0)

o libsecret-devel (sometimes available as libsecret-1-dev)

o Python 3.6 or later

Note: If you are installing the Linux packages on a z/Linux system, the system where you are
configuring SCS might require Internet access. When a site hosts its own package repositories, the
repositories might not contain all of the packages that are required to configure the SCS. In this
scenario, the z/Linux system requires Internet access to install the required packages.

. If you are configuring SCS on a Ubuntu z/Linux operating system, no further action is required. You can
now install Zowe CLI. For all other platforms (RHEL), continue to the next step.

. Enable the rhel-#-for-system-z—-optional-rpms repository to download libsecret-devel.

Replace # with the major version of RHEL that is running on the z/Linux system.

If your license entitles you to this repository, issue the following command to enable it:

. If you are configuring SCS to run on RHEL V8.x or later, no further action is required. You can now install
Zowe CLI. For RHEL V7.x, continue to the next step.

. Install the Red Hat Developer Toolset to ensure that you are running a version of the gcc-c++ compiler
that can build the SCS native binaries.

Issue the following commands to enable the repositories that are required to install the toolset:
. Install the toolset:
. After you install the toolset on RHEL V7.x, you can install Zowe CLI.

Important: The SCS is installed every time that you install or update Zowe CLI. On RHEL V7.x, ensure
that the Red Hat Developer Toolset is enabled every time you install or update Zowe CLI. When you do
not enable the toolset, secure credential management is not available on the system. To ensure that the
toolset is enabled when you install Zowe CLI, issue the following commands instead of the standard
NPM install commands. For example:

When you run these commands, Zowe CLI is installed globally and the system will use the latest version
of the C++ compiler to build the native components. Refer back to the instructions to set up the Secure
Credential Storage component of the Zowe CLI.

Version: v2.4.x LTS

Configure Zowe CLI on operating systems
where the Secure Credential Store is not
available

By default, Zowe CLI attempts to store sensitive information and credentials in the operating system’s
credential manager. When the information cannot be stored securely, Zowe CLI displays an error when you
attempt to create V1 style profiles or a V2 configuration. The actions that are required to disable secure
credential management differ depending on the type of configuration being used.

V1 profiles

Existing V1 profiles will continue to function properly. However, it will not be possible to create new profiles
without disabling secure credential management. To disable secure credential management for V1 profiles:

1. Navigate to the .zowe/settings directory.

2. Modify the imperative.json file by replacing the Credential Manager override value to the

following:

3. Save the changes.

Team configuration
Team configuration is stored in zowe.config.json .

Team configuration can be created without access to the Secure Credential Store. However, team
configuration does not store sensitive user information on the system. Subsequent commands prompt for
the user’s sensitive information when it not provided on the command line, and will attempt to save it with
the new Auto Store functionality. Users may experience errors when Auto Store cannot save sensitive
information securely. To mitigate this error, disable the Auto Store functionality by changing the value of the
autoStore property from true to false inthe zowe.config.json or zowe.config.user.json

file.

Example:

Version: v2.4.x LTS

Installing Zowe CLI with Node.js 16 on
Windows

There are several preferred installation workarounds when you encounter the following scenarios:

* Using Node.js version 16 with npm version 8 on Windows, want to install from the TGZ, and have
restricted Internet access

e Unable to install Zowe CLI while offline using the TGZ bundle
The workaround installation options are, in order of preference:

e Configure NPM proxy to access the public NPM registry (npmjs.org) so that the install from TGZ can
succeed. To configure an NPM proxy:
o If your proxy isHTTP: npm config set proxy <proxyUrl>
o If your proxy is HTTPS: npm config set https—-proxy <proxyUrl>

* Install CLI from an online registry instead of TGZ. This may also require configuring an NPM proxy. See
Installing Zowe CLI from an online registry.
e Downgrade NPM to version 6. To downgrade from a newer version of NPM, issue the command: npm

install -g npm@6.x

Additional Considerations

There are issues with Node 16 and bundled optional dependencies in offline node installs. Because of the
issues, the optional cpu-features package was removed from the offline .tgz file that is available from
zowe.org and Broadcom. The installation process attempts to reach a configured registry and to use any
NPM proxy configured on the system. If the attempt fails, the installation process completes normally.

cpu-features changes the SSH cipher order that is used on the zowe uss issue ssh commands,
favoring chacha20-poly1305 cipherin cases where CPUs do not have built in AES instructions. This

should not affect performance.

https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-from-an-online-registry

Version: v2.4.x LTS

Install CLI from Online Registry Via Proxy

This topic describes how to install Zowe CLI using the NPM install command when you are working behind a
proxy server. Use this installation method when your site blocks access to public npm.

You can install Zowe CLI from an online registry via proxy on Windows, macQOS, or Linux operating systems:

e This method requires access to an internal server that will allow you to connect to the appropriate
registries. For other installation methods, see Installing CLI.

* Your default registry must be public npm (or a mirror of public npm).

* If you previously installed the CLI and want to update to a current version, see Updating Zowe CLI

Follow these steps:
1. Identify the proxy server, including the IP address or hostname and the port number.

o If your proxy server does not require login credentials, issue the following commands to add the
proxy URL to the NPM config file:

= [proxy_name]: The IP or hostname

= [port_number]: The port number of the proxy server.

o If your proxy server requires login credentials, issue the following commands to add the proxy
URL, with login credentials, to the NPM config file:

= [username] and [password]: The required login credentials
= [proxy_name]: The IP or hostname

= [port_number]: The port number of the proxy server

2. Ensure that you meet the System requirements for CLI.

3. To install Zowe CLI, issue the following command. On Linux, you might need to prepend sudo to
your npm commands:

4. (Optional) To install open-source Zowe plug-ins:

a. Ensure that your system meets the Software requirements for Zowe CLI plug-ins.

https://docs.zowe.org/stable/user-guide/cli-updatingcli
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

b. Issue the following command to install all of the plug-ins:
Zowe ClLl is installed.
5. (Optional) Verify that a Zowe plug-in is operating correctly.

o [my-plugin]: The syntax for the plug-in. For example, @zowe/cics@zowe-v2-1ts .

6. (Optional) Test the connection to z/OSMF. See Testing connections to z/OSMF

7. (Optional) Access the Zowe CLI Help (zowe —-help) or the Zowe CLI Web Help for a complete
reference of Zowe CLI. After you install Zowe CLI, you can connect to the mainframe directly issuing a
command, by creating user profiles and making use of them on commands, or by using environment
variables. For more information, see Displaying help.

https://docs.zowe.org/stable/user-guide/cli-using-using-profiles#testing-connections-to-zosmf
https://docs.zowe.org/stable/user-guide/cli-using-displaying-help

Version: v2.4.x LTS

Updating Zowe CLI

Zowe™ CLlI is updated continuously. You can update Zowe CLI to a more recent version using online registry
method or the local package method.

You must update Zowe CLI using the method that you used to install Zowe CLI.

Updating to the Zowe CLI V2 Long-term Support (v2-Its)
version

If you are running Zowe CLI version v1.8.x to v1.27.x, you can update to @zowe-v2-1ts (LTS version) to

leverage the latest Zowe CLI and plug-ins functionality.
1. Update Zowe CLI. Open a command line window and issue the following command:
2. Update Zowe plug-ins. Issue the following command to install all Zowe plug-ins:

Note: To install a subset of the plug-ins, remove the syntax for the plug-ins that you do not want to
update. For example:

3. (Optional) Migrate your Zowe CLI profiles from your current installation to your V2 installation. Issue the
following command:

Although you can run Zowe CLI V2 successfully using CLI V1 profiles, we strongly recommend using CLI
V2 profiles.

Note: Profile data is backed up in case you want to revert the profiles to your previous Zowe CLI
installation.

4. (Optional) If you no longer require the profiles for your previous Zowe CLI installation, you can delete
them. Issue the following command:

Important: We do not recommend deleting the profiles from your previous Zowe CLI installation until
you have tested your V2 installation and are satisfied with its performance.

You updated to the Zowe CLI V2-LTS version!

Ensure that you review the Release Notes, which describes Notable Changes in this version. We
recommend issuing familiar commands and running scripts to ensure that your profiles/scripts are
compatible. You might need to take corrective action to address the breaking changes.

Identify the currently installed version of Zowe CLI

Issue the following command (case-sensitive):

Identify the currently installed versions of Zowe CLI plug-
ins

Issue the following command:

Update Zowe CLI from the online registry

You can update Zowe CLI to the latest version from the online registry on Windows, Mac, and Linux

computers.

Note: The following steps assume that you previously installed the CLI as described in Installing Zowe CLI

from an online registry.
1. Update Zowe CLI. Open a command line window and issue the following command:
2. Update Zowe plug-ins. Issue the following command to install all Zowe plug-ins:

Note: To install a subset of the plug-ins, remove the syntax for the plug-ins that you do not want to
update. For example:

3. Recreate any user profiles that you created before you updated to the latest version of Zowe CLI.

Update or revert Zowe CLI to a specific version

Optionally, you can update Zowe CLI (or revert) to a known version. The following example illustrates the
syntax to update Zowe CLI to version 7.0.0:

Update Zowe CLI from a local package

https://docs.zowe.org/stable/getting-started/release-notes/v2_0_0
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-from-an-online-registry

To update Zowe CLI from an offline (. tgz), local package, uninstall your current package then reinstall
from a new package using the Install from a Local package instructions. For more information, see
Uninstalling Zowe CLI and Installing Zowe CLI from a local package.

Important! Recreate any user profiles that you created before the update.

https://docs.zowe.org/stable/user-guide/cli-uninstall
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-from-a-local-package

Version: v2.4.x LTS

Uninstalling Zowe CLI

You can uninstall Zowe™ CLI from the desktop if you no longer need to use it.

Important! The uninstall process does not delete the profiles and credentials that you created when using
the product from your computer. To delete the profiles from your computer, delete them before you uninstall
Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe
CLI.

1. Open a command-line window.
Note: If you do not want to delete the Zowe CLI profiles from your computer, go to Step 5.
2. List all configuration files that you created. Issue the following command:
Example:
3. Delete all of the configuration files that are listed. Issue the following command:
Tip: For this command, use the results of the zowe config list command.
4. Uninstall Zowe CLI by issuing the following command:

Note: You might receive an ENOENT error when issuing this command if you installed Zowe CLI from a

local package (.tgz) and the package was moved from its original location. In the event that you receive
the error, open an issue in the Zowe CLI GitHub repository.

The uninstall process removes all Zowe CLI installation directories and files from your computer.

5. Delete the ~/.zowe or %homepath%\.zowe directory on your computer. The directory contains the

Zowe CLI log files and other miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your computer.

Version: v2.4.x LTS

Information Roadmap for Zowe Explorer

This roadmap outlines the information resources that are applicable to the users who are interested in Zowe
Explorer. These resources provide information about various subject areas, such as learning basic skills,
installation, developing, and troubleshooting for Zowe Zowe Explorer.

The following definition of skill levels about Zowe Explorer helps you find the most relevant resources:

e Beginner: You're starting out and want to learn the fundamentals.
e Intermediate: You have some experience but want to learn more in-depth skills.

e Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals

Zowe skill level: Beginner

e Zowe Explorer overview

New to Zowe Explorer? This overview topic introduces the key features, main components, and benefits
of Zowe Explorer.

e Zowe Explorer FAQs

If you have a question, review the FAQ, which answers the most commonly asked questions about Zowe
Explorer.

* Blog: Visual Studio Code for Mainframe Via the Zowe Explorer Extension

This Meduim article outlines the basics of Zowe Explorer, including Getting Started videos.

Installing and configuring

Zowe skill level: Beginner

https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/getting-started/zowe_faq#zowe-explorer-faq
https://medium.com/zowe/visual-studio-code-for-mainframe-via-the-zowe-explorer-extension-b679054ffaf7

 Installing Zowe Explorer
This page includes the system requirements and steps for installing the Zowe Explorer.
* Video: Getting started with Zowe Explorer (Part 1)
e Video: Getting started with Zowe Explorer (Part 2)
These videos help you to get started with Zowe Explorer and show the basic data set use cases.
e Zowe Explorer Profiles

This page describes how to create and work with Zowe Explorer profiles. Having a profile enables you to
use all functions of the extension, activate the Secure Credential Store plug-in to securely store
credentials, and more.

Using Zowe Explorer

Zowe skill level: Intermediate

¢ Using Zowe Explorer

This page includes usage tips and sample use cases for data sets, USS files, JOBs, and TSO
commands. Familiarize yourself with the extension and make the best use of available options and
features.

Extending Zowe Explorer

Zowe skill level: Advanced

e Extend Zowe Explorer
Learn how to create extensions for Zowe Explorer to introduce new functionalities.

e Zowe Explorer CICS Extension

https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer
https://youtu.be/G_WCsFZIWt4
https://youtu.be/X4oSHrI4oN4
https://docs.zowe.org/stable/user-guide/ze-profiles
https://docs.zowe.org/stable/user-guide/ze-usage
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Extending.md
https://docs.zowe.org/stable/user-guide/ze-using-zowe-explorer-cics-ext

Learn how to install the CICS extension. The extension adds CICS functionality to the Visual Studio
Code extension, which lets you interact with CICS regions and programs.

e Zowe Explorer FTP Extension

Learn how to install and use the FTP extension. The extension adds the FTP protocol to the Zowe
Explorer VS Code extension, which lets use z/OS FTP Plug-in for Zowe CLI profiles to connect and
interact with z/OS USS.

e Zowe Explorer repository

The GitHub repository of contains the source code of Zowe Explorer and other Zowe Explorer-related
extensions. Check out the landing page README in the repository to find out how to contribute to the
extension.

» Developing for Eclipse Theia

This article contains information on how to develop for Eclipse Theia.

Contributing to Zowe Explorer

Zowe skill level: Advanced

e Contributing guidelines

This document is intended to be a living summary of conventions & best practices for development of
the Visual Studio Code Extension for Zowe.

» Conformance Program

This topic introduces the Zowe Conformance Program. Conformance provides Independent Software
Vendors (ISVs), System Integrators (Sls), and end users greater confidence that their software will
behave as expected. As vendors, you are invited to submit conformance testing results for review and
approval by the Open Mainframe Project. If your company provides software based on Zowe CLI, you
are encouraged to get certified today.

* Blog: Zowe Conformance Program Explained

This Medium article provide more details about the Conformance Program, including useful references.

https://docs.zowe.org/stable/user-guide/ze-ftp
https://github.com/zowe/vscode-extension-for-zowe
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Theia.md
https://github.com/zowe/vscode-extension-for-zowe/blob/master/CONTRIBUTING.md
https://docs.zowe.org/stable/extend/zowe-conformance-program
https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea

Troubleshooting and support
e Troubleshooting Zowe Explorer

Learn about the tools and techniques that are available to help you troubleshoot and resolve problems.
You can also find the list of Zowe Explorer issues.

e Submit anissue

If you have an issue that is specific to Zowe Explorer, you can submit an issue against the vscode-

extension-for-zowe repository.

Community resources
e Slack channel

Jointhe # zowe-explorer Slack channel to ask questions, propose new ideas, and interact with the
Zowe community.

e Zowe Explorer squad meetings

You can join one of the Zowe Explorer squad meetings to get involved.
e Zowe Blogs on Medium

Read a series of blog articles about Zowe on Medium to explore use cases, best practices, and more.
e Community Forums

Look for discussion on Zowe topics on the Open Mainframe Project Community Forums.

https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze
https://github.com/zowe/vscode-extension-for-zowe/issues
https://openmainframeproject.slack.com/
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://medium.com/zowe
https://community.openmainframeproject.org/c/zowe

Version: v2.4.x LTS

Visual Studio Code (VS Code) Extension for
Zowe

chat on Slack

The Zowe Explorer extension for Visual Studio Code (VS Code) modernizes the way developers and system
administrators interact with z/OS mainframes, and lets you interact with data sets, USS files and jobs. Install
the extension directly to VSCode to enable the extension within the GUI. Working with data sets and USS
files from VSCode can be more convenient than using 3270 emulators, and complements your Zowe CLI
experience. The extension provides the following benefits:

e Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, USS files and jobs.

Lets you create, edit, and delete Zowe CLI zosmf compatible profiles.

Lets you use the Secure Credential Store plug-in to store your credentials securely in the settings.

Note: Zowe Explorer is a subcomponent of Zowe. The extension demonstrates the potential for plug-ins
powered by Zowe.

Software Requirements

Ensure that you meet the following prerequisites before you use the extension:

e Get access to z/OSMF.
* Install Node.js v8.0 or later.
e |nstall VSCode.

» Configure TSOJE address space services, z/OS data set, file REST interface, and z/OS jobs REST
interface. For more information, see z/OS Requirements.

e Create one Zowe CLI zosmf profile so that the extension can communicate with the mainframe.

Profile notes:

e You can use your existing Zowe CLI zosmf profiles that are created with the Zowe CLI v.2.0.0 or later.

https://code.visualstudio.com/
https://zowe.org/home/
https://nodejs.org/en/download/
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements

e Zowe CLI zosmf profiles that are created in Zowe Explorer can be interchangeably used in the Zowe
CLI.

e Optionally, you can continue using Zowe CLI V1 profiles with Zowe Explorer. For more information, see
instert link here.

Installing
Use the following steps to install Zowe Explorer:
1. Address the software requirements.
2. Open VSCode, and navigate to the Extensions tab on the left-hand side of the UI.
3. Type Zowe Explorer in the search field.
Zowe Explorer appears in the list of extensions in the left-hand panel.
4. Click the green Install button to install the extension.
5. Restart VSCode.
The extension is now installed and available for use.

e Note: For information about how to install the extension froma VSIX file and run system tests on the

extension, see the Developer README.

You can also watch the following videos to learn how to get started with Zowe Explorer, and work with data
sets.

https://github.com/zowe/vscode-extension-for-zowe/blob/main/docs/README.md

Configuration

Configure Zowe Explorer in the settings file of the extension. To access the extension settings, navigate to
Manage (the gear icon) > Settings, then select Extensions > Zowe Explorer Settings. For example, you

can modify the following settings:

» Data set creation settings: You can change the default creation settings for various data set types.

Follow these steps:

1. Click the Edit in settings.json button under the Data Set, USS or JOBS settings that you want to edit.
2. Edit the settings as needed.

3. Save the settings.

» Set the Temporary Folder Location: You can change the default folder location where temporary files
are stored.

Follow these steps:

i. Click the Edit in settings.json button under the Data Set, USS or JOBS settings that you want to
edit.

ii. Modify the following definition:
where [path/to/directory is the folder location that you specify.

iil. Save the settings.

Relevant Information

In this section you can find useful links and other relevant to Zowe Explorer information that can improve
your experience with the extension.

* For information about how to develop for Eclipse Theia, see Theia README.

* For information about how to create a VSCode extension for Zowe Explorer, see VSCode extensions for

Zowe Explorer.

» Visit the #zowe-explorer channel on Slack for questions and general guidance.

https://github.com/zowe/vscode-extension-for-zowe/blob/main/docs/README-Theia.md
https://github.com/zowe/vscode-extension-for-zowe/blob/main/docs/README-Extending.md
https://openmainframeproject.slack.com/

Version: v2.4.x LTS

Zowe Explorer profiles

After you install Zowe Explorer, you need to have a Zowe Explorer profile to use all functions of the
extension.

Note: You can continue using Zowe V1 profiles with Zowe Explorer V2.

Configuring team profiles

Zowe CLI team profiles simplify profile management by letting you to edit, store, and share mainframe
configuration details in one location. You can use a text editor or an IDE to populate configuration files with
connection details for your mainframe services. By default, your team configuration file is located in the

.zowe home folder, whereas the project-level configuration file is located in the main directory of your
project. You can create profiles that you use globally, given that the names of the globally-used profiles are
different from your other profile names.

Note: A project context takes precedence over global configuration.

Creating team configuration files

Create a team configuration file.

1. Navigate to the explorer tree.

2. Hover over DATA SETS, USS, or JOBS.

3. Click the + icon.

4. Select Create a New Team Configuration File.

5. Chose either a global configuration file or a project-level configuration file.
6. Edit the config file to include the host information and save the file.

7. Refresh Zowe Explorer by either clicking the button in the notification message shown after creation,
alt+z ,orthe Zowe Explorer: Refresh Zowe Explorer command palette option.

Your team configuration file appears either in your .zowe folder if you choose the global configuration file
option, or in your workspace directory if you choose the project-level configuration file option. The
notification message that shows in VS Code after config file creation will include the path of the file created.

Managing profiles

You can edit your project-level or global configuration files.
Follow these steps:
1. Right-click on your profile.
2. Select the Add, Update, or Delete Profile options to edit the zowe config file in place.
Tip: Use the Intellisense prompts if you need assistance with filling parameters in the file.
3. Save the config file.
4. Refresh the view by clicking the refresh icon in the Data Sets, USS, or Jobs view.

Alternatively, press F1to open the command palette, type and execute the Zowe Explorer: Refresh
Zowe Explorer option.

You successfully edited your configuration file.

Sample profile configuration

View the profile configuration sample. In the sample, the default lparl.zosmf profile will be loaded upon

activation.

You can use the sample to customize your profile configuration file. Ensure that you edit the host and

port values before you work in your environment.

Working with Zowe Explorer profiles

Important! The information in this section applies to only Zowe CLI V1 profiles unless otherwise noted.
Zowe CLI V1 profiles are defined by having one yaml file for each user profile.

You must have a zosmf compatible profile before you can use Zowe Explorer. You can set up a profile to
retain your credentials, host, and port name. In addition, you can create multiple profiles and use them
simultaneously.

Follow these steps:

1. Navigate to the explorer tree.
2. Click the + button next to the DATA SETS, USS or JOBS bar.

Note: If you already have a profile, select it from the drop-down menu.
3. Select the Create a New Connection to z/OS option.

Note: When you create a new profile, user name and password fields are optional. However, the system
will prompt you to specify your credentials when you use the new profile for the first time.

4. Follow the instructions, and enter all required information to complete the profile creation.

You successfully created a Zowe CLI zosmf profile. Now you can use all the functionalities of the
extension.

If you need to edit a profile, right-click the profile and select Update Profile option.

In addition, you can hide a profile from the explorer tree, and permanently delete a profile. When you delete
your profile permanently, the extension erases the profile from the .zowe folder. To hide or delete a profile,

right-click the profile and choose one of the respective options from the list.

Validating profiles

Note: The following information applies to Zowe CLI V1 profiles (one yaml file for each user profile) and
Zowe CLI team profiles (Zowe CLI V2).

Zowe Explorer includes the profile validation feature that helps to ensure that z/OSMF is accessible and
ready for use. If a profile is valid, the profile is active and can be used. By default, the feature is automatically
enabled. You can disable the feature by right-clicking on your profile and selecting the Disable Validation
for Profile option. Alternatively, you can enable or disable the feature for all profiles in the VS Code settings.

Follow these